PHYS 501: Mathematical Physics |
Homework #2

Prakash Gautam

April 18, 2018

1. An electrical network consists of N interconnected nodes. Each pair of nodes (i, j) is connected by a resistor

of resistance R;; = min(é,j) + 2 max(i, j), for 4,5 = 1,...,N. Let V; be the electrical potential of node
1, and choose the zero level of potential to set V; = 0. Then Kirchhoffs laws for the other nodes in the
network can be conveniently written as

= B

, for i =2, ..., N where I; is the current flowing from node i to some external circuit. Suppose N = 100 and
the external connection is such that current flows out of node 2 and back into node 1, so Iy = 1, I, = 1,
and I; = 0 for ¢ > 2. By solving the above (N1)-dimensional matrix equation, calculate the total resistance
between nodes 1 and 2.

Solution:

Expanding the i*" current value

Vo—-Vi Vs—-V, V =V
= 2 1_|_ 3 1++M

I
' Rp Ris Ry
1 1 1 Vs V3 Vi
e Vid b =t
<R12 Ry R1N> ""Ris " Ris RN

Smililarly expanding all others we get the pattern. So the equivalent matrix would be.

1 1 1 1 1 1
I (312 + Ri2 + + RIN) Ri2 Ras Rin
Iy B (a4 1) L 1
I3 | _ Ra1 Ra1 Ras Raon Ras Raon
1 1 1 1 1 1
In Rn1 Rn2 Rns3 (RNI + Rn2 + + RNN)

This is the Matrix equation relating the Ohm’s law where I = %. The 1/R Matrix is N x N matrix. But
since V is zero and I; is known we can eleminate the first row and column of 1/R Matrix to get (N — 1)
Dimensional Matrix

Wi
Va
V3

Vi

import numpy as np
from numpy import linalg as LA

num_nodes = 100
#Construct the matrix
N = num_nodes
def Res(i,j):
return min(i,j) + 2*max(i,j)

Construct the R matrix with every elements except the diagonals

int(i!=j) returns 1 for non diagonal places and 0 for diagonal

places so all the diagonal elements

R=np.array ([(int (i!=j)*(1/Res(i,j))) for i in range(1,N+1) for j in range(1,N+1)]).reshape
(N,N)

Since in the matrix we see that the diagonal
elements are simply negative sum of all other
elements in the matrix, we sum them to get the
diagonal elements and put them back to matrix
Diag = [-sum(R[i]) for i in range(N)]
np.fill_diagonal (R,Diag)

#Deleting the first row and colums
R = RI[1:,1:]

#Initializing the Current column matrix to zero
I = np.zeros(N-1) .reshape(N-1,1)

The first value of current I_2 is indexed at zero
so I[0] means the I_2 which is 1
I[0] =1

Solving the matrix equation to get the potentials at all nodes
V =LA.solve(R,I).reshape(N-1)

Since our zero index in program is index 2 for current and voltages
the voltage at node 2 is V[O0]

v2 = V[0]

print (’The electric potential at mnode 2 is {:.4}V’.format(V[0]))

The current in the whole circuit is 1A so the equivalent resistance
can be calculated by Ohm’s law. R_eq = (V1 - V2) / I, since V1 = 0

The total resistance of circuit is just R_eq = -V2/1 = -V2

print (’The equivalent Resistance of circuit is {:.4}’.format(-V[0]))

The electric potential at node 2 is -0.9442V
The equivalent Resistance of circuit is 0.94420 O

. The data file hw2.2.dat on the course Web page contains (hypothetical) experimental data on the measure-
ment of a function y(x). The N data points are arranged, one measurement per line, in the format

xi yi (measured) oi

where o; is an estimate of the uncertainty in the i-th measurement. It is desired to find the least-square fit
to the data by polynomials of the form

N
y(x) =Y a’™t
j=1

for specified values of m, by minimizing the quantity

m

V2= f: Yi — 2

P
i=1 v

i1
a;T

As discussed in class (and in Numerical Recipes, pp 671676), write down the overdetermined design matrix
equation that results from writing y(x;) = v,

Aa=05>

, where A;; = % , by = % (so the measurement undertainties are included in each row), and a is the
vector of unknown coefficients. Solve this system using singular value decomposition (svdemp in Numerical
Recipes, svd in Python or Matlab) to obtain the best fitting polynomial for each of the cases m = 2, 4, 7,
and 13. For each m, give the values of a; and x?, and plot the data and the best fit on a single graph.

Solution:

#!/usr/bin/env python3

import numpy as np

import numpy.linalg as LA

import matplotlib.pyplot as plt

from matplotlib2tikz import save as tikz_save

class LeastSquare():
mlist = [2,4,7,13]1#6,7,8,9,13]
pltcnt = len(mlist)
pltprm = 221
clr = 0.1 #clearence

datafile = ’./data/hw2.2.dat’
slc = 500 # slice length to test for fewer data points
epsilon = 1e-3 # zero threshold for svd inverting

def __init__(self):
self.readfile ()

def readfile(self):
read = np.genfromtxt(self.datafile)

self.x = readl[:,0]; self.x = self.x[:self.slc]
self.y = read[:,1]; self.y = self.y[:self.slc]
self.sd = read[:,2]; self.sd = self.sd[:self.slc]
self .err = self.sd.reshape(self.slc,1)

return read

def construct_A(self ,M):
#Reform x shape to column shape

xcol = self.x.reshape(self.slc,1)
Same for error values
err = self.sd.reshape(self.slc,1)

initialize the first column of the A matrix
A = (np.zeros(self.slc) + 1).reshape(self.slc,1)/err
for m in range(1,M):

A = np.append(A,xcol**m/err,1)

return np.matrix(A)

def construct_b(self):
coly = self.y.reshape(len(self.y),1)
return np.matrix(coly/self.err)

def get_svd_inverse (self ,M):
U,W,V = LA.svd(M)
WI_star = []
for wi in W:

if wi < self.epsilon:
WI_star.append (0)
else:
WI_star.append (1/wi)
WI = np.diag(WI_star)

r,c = M.shape
inc_prm = r-c
cm = np.matrix(np.zeros(inc_prm*c).reshape(c,inc_prm))

WI = np.hstack([WI,cm])
return V.T*WIxU.T

def get_polynomial_values(self,aj,x):
y = np.zeros(len(x))
for j in range(len(aj)):
y += ajl[jl*xxxj #since our index starts at O, it works
return y

def get_coefficient (self ,m):
A = self.construct_A(m)
b = self.construct_b()
AI = self.get_svd_inverse (A)

a = AIxb
#print (’a shape is {}’.format(a.shape))
ar = np.squeeze (np.asarray(a))

return ar

def get_chi_sq(self,true,predicted,error):
return np.sum(((true-predicted)/error) x*2)

def get_legend(self,aj):

j =2

lg = r’>{:.2} + {:.2}x’.format(aj[0],ajl[1])

for a in ajl[j:1:
sgn=)+J
if a < 0: sgn = 7’
t = sgn + r’{:.4}8$x"’ . format(a)+’{’+’{}’.format (j)+’}$’
lg += t
jo+= 1

return 1lg

def draw_graph(self):
cnt = 0
for m in self.mlist:
#plt.subplot(self.pltprm+cnt); cnt+=1

aj = self.get_coefficient (m)

#print (’ar was ’,ar)

x = np.linspace(1.1*min(self.x) ,1.1*max(self.x) ,500)
y = self.get_polynomial_values(aj,x)

prediction = self.get_polynomial_values(aj,self.x)
chisq = self.get_chi_sq(self.y,prediction,self.err)

plt.plot(x,y,’r’,linewidth="2.5",label=self.get_legend(aj))
plt.legend ()

plt.plot(self.x,self.y,’go’)

plt.title(’For M = {} $\chi~2$={:.3e}’.format(m,chisq))
plt.savefig(’M{}.png’.format (m))

plt.show ()

plt.suptitle(’M degree polynomial least square fit by SVD’)
#tikz_save (’Least square plots.tex’,figurewidth="14cm",figureheight="9cm")
plt.show ()

if __name__ == ’__main__"’:

LS = LeastSquare ()
LS.draw_graph ()

For M = 2 y?=4.437e+05

= -0.055 + 1.6x
7.5 1

5.0 A

2.5 1

0.0 1

—2.5 4

—5.0

—7.5

For M = 4 y?=4.364e+05

—— 0.049 + 0.75x-0.373x? + 1.459x3

T
-1.0 —0.5 0.0 0.5 1.0

The a; values are shown as polynomial coefficient in the legend of each plot and the x? values are given at
the top of each graph. In each case the continuous line is the fitted polynomial and the scattered dots are
the values read from file. O

Solution:
This Question was mostly solved by use of Sympy package in python.

import numpy as np
import numpy.linalg as LA

from scipy.integrate import quad

import sympy as smp
import sympy.functions as smf
import sympy.physics.quantum.constants as qc

For M = 7 ¥?=3.759e+05

10.0

7.5 1

5.0 A

2.5 4

0.0

—2.5

—5.0

757 — 1.0+ 2.3x + 17.89%2-5.279x3-46.18x* + 6.187x5 + 29.69x°

T
-1.0 —0.5 0.0 0.5 1.0

For M = 13 y?=3.724e+05

"+ 83.32x5 + 125.6x5-194.8x7-34.33x% + 193.6x%-70.54x10-65.76x11 + 49.57x12

15 4

10 A

The function ¢, (z) was defined to get any order function

def fai(self,n):
x = self.x; b = self.b
of = smp.Rational(1,4)
oh = smp.Rational (1,2)
A = (bx*2/smp.pi)**of*1/(smp.sqrt (2**n*smf.factorial(n)))
return (smp.exp(-oh*b**2xx*x2)*smf.hermite(n,b*x)) * A

So for example this function gives for fai(n) as.

275 /|| e

2V -5 g, (Ba)
p
/P!
Then the hamiltonial operator function is defined as.
def H(self ,psi):
hf = smp.Rational(1,2)
x = self.x; m = self.m; hcut = self.hcut

hctm = -hf*(hcut**2)/(m)
return hctm * smp.diff (psi,x,2) + self.V(x)*psi

We wish to approximate the energy eigenfinetions of a one-dimensional square well by ex-
panding them in terms of a finite (N-dimensional) subset of harmonic oscillator wavefunctions.
The square well is defined by the potential

)0 (x| <a),
V“}_{vn (2] > a).

The harmonic oscillator potential is Vi,(x) = %kxi, where we will take k = 2V5/a® here. As
disenssed in class, solving the problem entails diagonalization (e.g. using the Python function
eigvals or the Numerical Recipes functions tred2 and tqli) of the Hamiltonian matrix
H = (hpm), where

b = (alH|m) = [dzon(@) | -1 4 V(@) om@)
e - On 2m dx? EH O

and ¢y (x) is the n-th harmonic oscillator wavefunetion:

AN 1 i
B () = (?) o e 7, (Ba)

with g1 = mk/R2.

Use the recurrence relations given in Riley & Hobson, p. 373, to generate the H,,, and the

differential relations (same page) along with the trapezoidal rule, where needed, to compute
the matrix elements fiygpy,.

Hence, by diagonalizing the matrix H, determine the first (and only) two energy levels Ey
and F of a square well with Vpa® = Zﬁzl,f'm._ for three different values of N: (a) use ¢y,dy
as a basis (W = 5); (b) use dp.....do (N = 10); and (c) use dg.....dw (N = 20). In each
case, compare vour answers with the exact values

I n?

Eo=053—— . E =180—.
il rea’

P
Writing A, = 2 3/27? \sz‘fl and after operating ¢,(z) by Hamiltonian operator and using the recurrence relation
we get.

_ﬁ212
I;[(lsp(x) = Ap€2—m (_52h2 (/62$2Hp (ﬁx) —4BpxH, 4 (,830) +4p (p - 1) Hy (ﬂ@ - H, (ﬂx)) + km$2Hp (ﬁx))

If we evaluate the functions operated by at numeric value 0.

_ 6212
f{gbo(x) = Apz—mz (_6277/2 (52562 _ 1) + kmm2)
Evaluating function ¢o(z) we get.
¢o(z) = Age™ =

Now to get the hamiltonian matrix element we do.

hoo = / o5 () H o (2)dx

Putting a = 1,m = 1 and A = 1 to work in the Energy units of h22 we get k =4 [= 4'/%. Evaluating

ma
the integrals at these values we get. hgp = 0.9544 We can construct the matrix similarly for every value of

p and ¢ for the dimension given. Getting eigenvalues from the constructed matrix gives the Energy level

in the units of -2
ma

For N =5

0.954500 0.000000 —0.763548 0.000000 —0.396751
0.000000 2.215608 0.000000 —2.468673 0.000000
—0.152710 0.000000 2.072950 0.000000 —3.085998
0.000000 —1.058003 0.000000 2.146257 0.000000
—0.044083 0.000000 —1.714443 0.000000 3.164405

The eigen values for this matrix is:
[0.109385071685, 0.564434747324, 1.09686038844, 3.79742982845, 4.98561012119]

Which means the first two energy level are

h? h?
Ey=0109— E; =0.564—
ma ma
For N =10
h? h?
Ey=724x10""—5 E; =1102x10°—
ma ma
The complete program is ([l

#!/usr/bin/env python3

import numpy as np
import numpy.linalg as LA

from scipy.integrate import quad

import sympy as smp
import sympy.functions as smf

class Energylevels ():
#define constants

ca = 1 # potetial well half width = 1
cm = 1 # mass

chc = 1 #hbar = 1

cv0 = 2xchc**2/(cm*ca**2) # constanv VO inferred from conditions
ck = 2%xcv0/(ca**2) # harmonic oscillator constant

cb = (cm*ck/(chc**2))**(1/4.) # beta parameter.

dimlist = [56,10,20] # dimension list
#define vars and consts
b,fi,k,m,p,q,x = smp.symbols(’beta,phi,k,m,p,q,x’,real=True)

#special variables

hcut = smp.symbols (’hbar’,real=True)
ndim 5

lim = 1

constants substution dictionary. This should only affect the
scale of the output value.
subd = {b:cb,hcut:chc,k:ck,m:cm}

def init__(self):

pass

def V(self,x): #potential function

if

def

def

def

def

def

def

def

k = self.k
return smp.Rational (1,2)*k*x**2

fai(self,n):

x = self.x; b = self.b

of = smp.Rational(1,4)

oh = smp.Rational(1,2)

A = (b**2/smp.pi)**of*1/(smp.sqrt (2**n*xsmf.factorial(n)))
return (smp.exp(-oh*b**2*x**2)*smf.hermite(n,b*x)) * A

H(self ,psi):

hf = smp.Rational(1,2)

x = self.x; m = self.m; hcut = self.hcut

hctm = -hf*(hcut**2)/(m)

return hctm * smp.diff (psi,x,2) + self.V(x)*psi

getf (self ,p,q):

php = self.fai(p)

phq = self.fai(q)

fx = php * self.H(phq)
return fx

geth(self ,p,q):
fx = self.getf(p,q)
fx = fx.subs(self.subd)

hpq = self.integrate(fx,-self.ca,self.ca)
return hpq

integrate (self ,fx,a,b):

flx = smp.utilities.lambdify(self.x,fx)
v,e = quad(flx,-self.lim,self.lim)
return v

construct_H(self ,n):
H = np.zeros(n*n).reshape(n,n)

for v in [(p,q) for p in range(n) for q in range(m)]:

P,q =V
H[pl[q] = self.geth(p,q)

return np.matrix (H)

get_energy (self):
for m in self.dimlist:
hmn = self.construct_H(m)
evl,evc = LA.eig(hmn)
evl = np.squeeze (evl)
evl = sorted(evl)
print (evl)

#print (’For N = {} EO = {:.3e} and E1 = {:.2e}’.format(m,evl1[0],evl[1]))

name == main 7

EL
EL.

= EnergyLevels ()
get_energy ()

