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Preface

This document is the collection of the homework that I did during my time in Drexel University. You can
find the individual homework for each course in my university webpage, which also contains link to some
supporting documents like some python scripts I used and Cadabra2 stuffs I used for my tensor related
works. This document is formatted in a book format where each chapter is a course and each section (named
Homework One ... and so on) are the individual homemwork. If a problem is from the coursebook, then
the problem number starts with the reference to the book and problem number in boldface within a pair of
parenthesis.

As a caution, the solutions have a lot of errors. Honestly, after I got the graded homework back I have not
made any serious attempt to look back my homework and correct them. I would say there is at least an
average ~10% overall mistake in the solutions. Apart from the incorrect solutions, there are few noticable
errors and typos. There are some incomplete homework solutions too, which is partly because I did not have
that last extra hour before the due date to typeset.

The way I typeset my homework has evolved considerably over the course of the period I did all these home-
works. T took some time to reformat/reorganize the old files but it this has not been complete significantly.
Also, there are very obvious errors like some broken references and stuffs. So the problem in correcting those
errors is not as trivial as it sounds sometimes. I usually organize my work in a hierarchial directory structure,
and in compiling this one as a single monolithic document, I had to make sure that the relative input were
correct. I got that part by a very clever trick, which I might share in a blog post, if I get in a mood to do so.

Then there is a problem of dublicate reference, which I am sure are plenty in document. This basically
comes from the fact that when I originally did individual homework, I did not intend to compile them into
a single document, and so the anchor labels were defined to be unique just within that one document, when
I compiled them together there were a few that clashed, which I noticed and tried to correct. After the first
time I compiled this big document, I started making sure that the individual homework would have that
extra prefix so as to identify it uniquly, but I can’t gurantee that it is error free in that regard too.

I would say most of what I have done here is completely my own work, apart from obvious inspiration I
found in the internet off of other peoples work. I would say the one I have most influence from internet is
my Electromagnetic theory II homework. One major part of the reason was that I did not put up as much
as work in my coursework as I needed to, especially in the homework (I know what you are thinking at this
point of time, let me tell you I have watched this video too). But still then most of them is my own work
except when it is not. Since I did not plagiarize the thing, I have not given credit.

I owe a great deal of thank to my Professors for assigning these homework. Some of the unique homework
problem they have desined have got me into serious thinking a lot of the time. Some times when I have been
able to come up with the correct answer to these custom problem, it has given me as much joy as anything.
I owe a huge thanks to my class mates, Andrew Antczak', Sean Lewis, Steve Sclafani, Wexiang? Yu, with
whom I have had extensive discussion. Some of the works here are our collective work as a whole group or
as pair or trio.

I would appreciate any comment or feedback. Any comment or feedback can be directed to pgd59@Qdrexel.edu.
I might update this in the future.

Prakash Gautam,
2019 Jun 12

11 am pretty sure I spelt his last name correct
2] am positive I spelt this one correct too


http://www.physics.drexel.edu/~pgautam/courses/
https://cadabra.science/
https://www.youtube.com/watch?v=mm-4PltMB2A
mailto:pg459@drexel.edu
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Chapter 1

Mathematical Physics

1.1 Homework One

1.1.1.

1.1.2.

Let a and b be any two vectors in a real linear vector space, and define ¢ = a + Ab , where is real. By
requiring that ¢ > 0 for all A, derive the Cauchy-Schwartz inequality

(a-a)(b-b) > (a,b)2

When does equality hold? (Use only the general properties of the inner product. Do not assume that
it is possible to write a.b = |a||b| cos()

Solution:

Lets assume ¢ = a + Ab, then by the definition of inner product we get (c.c) >0

ce=(a+Ab)(a+Ab) >0

= ((a+ Ab).a) + A(a+ Ab).b) >0 Linearity of inner product
= (a.a) + A(b.a) + Aa.b) + X2(b.b) > 0 Linearity of inner product with Areal
= (a.a) + 2X(a.b) + \3(b.b) > 0 (a.b) = (b.a) for real vector space

The above inequality is quadratic in A which is real value. All the inner product map to real values
in this real linear space. The equality of above expression is a quadratic equation of in r with real
coeflicient. Since the quadriatic equation lies wholely above real axis it can’t have real solution. The
condition for which is

(a.a)(b.b) < (a.b)?
Clearly the equality hold when the two vectors are identical. O
(oo} An
Let A be any square matrix, and define B = A = Z — Prove that an eivenvector of A with
n!
n=0
A

eigenvalue A is an eigenvector of B, with eigenvalue e*.
Solution:
Given ) is eigenvalue of A. Let the corresponding eivenvector be C. By defition

AC = \C

Pre multiplying above relation with A we get.
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A(AC) = A(XC) = (AA)C = \(AC) = A2C = A\C = \2C

By induction we get

A"C = \"C (L.1)
Now lets operate the vector C' by B
o0 An
BC = Z . C (Definition of B Given)
n=0
— 1 . N : :
= Z EA C (Distributive property of Matrix over Matrix)
n=0
o0 1 .
=Y =\ (From (1.1))
— n!
o~ A" o .
= Z ) C (Distributive property of scalar over matrix)
n=0
=0 (Definition of e)
Since BC = e*C, C is the eigenvector of B with eigenvalue e*. [J |

1.1.3. Consider the 4-dimensional vector space of polynomials of degree less than or equal to 3, on the range
1 <z <1, spanned by the basis set {1,m,x27x3}.The inner product of two polynomials in this space
is defined as

(f.9) = / ol (@)g(e)da

Use Gram—Schmidt orthogonalization to construct two orthonormal basis sets, as follows:
(a) Start with the set as listed above and begin the procedure with the function 1, as in class.
(b) Rewrite the set as {#?,z,1,23}and begin the orthogonalization procedure starting with z?

Write down the matrix representing the transformation from basis (i) to basis (ii), and demon- strate
that it is orthogonal.
Solution:
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Let us write the cross product table for the given basis functions.

1 0 1 270 2
—x —x 1 1
1-1)= 1-1dz = —xd de = — | =24+ =1
( ) /_1|x| i /1xx+/0x1: 2}1—&- > 2+2

)
1 0 1 30 3 1
— 1 1
1-2)= 1 wde= | —zd / 2y = — Ll =—-+-=0
(1-2) /_1|x| e /_1 ’ x—i—ox ! 3 71+3 0 3+3
1 0 1 470 471
— 1 1 1
1.22) = 1-22d :/—3d / 3d:7$ L
(1-2%) [1|x| xedz 9 z>dx + Ox i 1 71-&-4 i 4-|-4 5
1 0 1 _ 510 JERR
(1'1'3):/ |x|1-x3dac:/ —aj4daj+/ x4d5c::| + ]
0 -1

—1 —1 5
(z-1)=(1-2)=0

1 1 1
(xz)z/ |a:|a:-xd:c:/ |z|1 - 22de = =
. . 2

1 1
(z - 2%) :/ |I|I'$2d$:/ |z[1 - 23dz =0
—1

—1
1 0 1 _.670 611 1 1 1
(x-xg)2[1|x|x-x3dx=[1—x5dx+/o x5dx=6x}l+g;]oz6+6:3
1
(x2-1):(1~w2):§ (?-z)=(z-2%) =0

1 1
1
(x?-2%) = / |z|2? - 2?dx = / 2|z - 23dx = 3
-1

-1

1 0 1 710 771
— 1 1
(:52~x3):/ |x|m2~x3d:ﬂ:/ —xﬁdx—l—/ dex:Tx -|—x7 :_?4_?:0
—1 -1 0 Ia Jo
1
2 1) =(1-2%=0 3or)= (-2 == 23 2?) = (2% 2?) =0
2
1 0 1 810 871
- 1 1 1
(x3-x3):/_1|m|x3~x3da::/_1—x7dx+/0 m7dx:%__1+ %_O=§+§=Z

For the first basis set: 1,7, 2% 2%; Let (v1,ve,v3,v4) = (1, 2,22, 23) and let (€1, €y, €3,€;) be the corre-

sponding orthonormal set.

ep=v1 =1 €] = il = ! =1
Y ' enen VD
. . R x 1
e2 = vy — (€1,v2)€1 €y = = = 7 =2z
T, %

=zr—(Lz)l=2—-0=x

The normal vector corresponding to vs can be found as.



CHAPTER 1. MATHEMATICAL PHYSICS

e3 = vz — (€2,v3)€2 — (€1,v3)€1 €3 =

=22 — (V2z,2%)V2z — (1,2°)1

2 —1/2

V(@2 —1/2,22 — 1/2)

) B 22 —1/2
= % — V2, 2V - V@) 2@ 12) + (1/2,1/2)
VB0 VE - L -z
o TN
B = V3 (22" 1)
For vy = x* we similarly get:
. % —(2/3)x
eq = vg — (€3,04)€3 — (€2,04)€2 — (€1,v4)€ “ \/(x3 — 22,23 - 22)
=% - (\/§ (2{1}2 — 1) 79€3>\/§ (2952 - 1) - (\/§$7$3)\@$ - (171'3)1 ’ 23— (2/3)30
=a® = V3 (2%, %) - (1,2%)) V3 (22% — 1) = V2(z,2%)V22 -
5 5 1 \/((1.3,;63) 22(.%'3,.%') - %
=2 = V3(0-0)V3 (22" - 1) = V25V22
i _ 23— (2/3)z
=z (;:1: 1-2-2.042
:x?’—g:c :6<x3—2x>:6x3—4x

Therefore the orthonormalized basis set is

{1, V2z, V3222 - 1), 6x3—4x}

Working out similarly,

Let (¢1',€4,€35',€4") be the corresponding orthonormal set.

/
€1

€

ey = vz — (6, v3)6" — (€1, v3)ér’
=1— (V2zx,1)V2z — (V32%,1)V32?
=1—2(z,1)V2z — V3(2?,1)V32?

zl_ﬂ.oﬁx_ﬁg.ﬁxz

/
~ €3

(eh,e5) = (1= %pa? 1 — Y,a?)
_ (1’ 1) . 2(1’ —3/2£E2) + (—3/2$2, —3/2£E2)
=1+ 2%(1,2%) + (%)% 2?)
=129 Y+ ()0 =4

- 1— 3/21,2

€3

VAR

2 a7 €1 T T 2

v =2 €1 = = = =V3z
Ve /(2% a?) s
e’ x 1
ve — (€1,v2) &' = 2 = = =2z
Vieb,eh)  /(z,x) 1/2

x — (V322, 2)V/3z?
r—V3.0-V322 =2

=2 — 342
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ey =vs— (€5 704)63 — (&' )& — (&, va)ér’ (), e}) = (2% — Fya,2® — Yy)
— (2 =322, 2%)(2 - 32%) — (V2z,2%)V2zx — (V32?,2°)V/322 = (2%,2%) = 2%(2°, 2) + (%)* (2,2
= 2% — (2(1, —3(95 L2%))(2 = 322)) — V2(z, 2%)V22 — V3(2?, 2%)V/3a = =2 04+%
=2 —(2 0—3-0)(2 - 32%)) — V2(Y)v2z — v/3(0)v/322 = s -
=z — L x*nggg: €' = = e 33::6%374
=2 = VoY)V =2 - 2 e~ Ve

So the orthonormal basis set is found to be.

{\/§x2, V2, —32%+42, 6x3—4x}

We can now find the transformation matrix between these two basis set. If we suppose A;; be the
elements of the transformation. Then é A;; = (éi, éj’) So,

= (1, \/3332) = V3(1,2%) = V3Y,

(€1, 61')
(€1, 6")
M = (61,67) = (1, -327 +2) = =3(L,2%) +2(1,1) = 3%, +2 =Y,
Mg = (€1,64) = (1,62° —4z) = 6(1,2%) +4(1,2) =6-04+4-0=0
( ) V2, 3:02) =2 x3(z,2%) =0
(€2, 6")
(€2, 65")
(€2, €4)

—3v2(z,2%) + V2(z,1) = —=3v2-0+v2-0=0
\@x,6x3—4x) = 6v2(1,2%) + 4v2(1,2) = 6v/2- 0+ 2v2-0 = 0

o
&
|

w

H

Jr

o
N—

I

(

- (\/ix 23;) = V2% 2(x,x) =2Y, =1
(
(

Wroking this out we get the transformation matrix as.

V3l 0 %0
0 1 0 0
Vo 0 —V3Yy 0
0 0 0 1

For an orthogonal matrix A, the inverse AT = A=! = AAT = AA~! = I. To prove that the matrix is
orthogonal it suffices to show that the product of the matrix and its transpose is identity matrix.

VB, 0 Y 0\ (V3% 0 % 0\ (1000
0 1 0 0 o 0 1 0 0] |10 1 00
v, 0 —V3Y% 0 Y, 0 —V3Y%, 0 00 1 0
0 0 0 1 0 0 0 1 0 0 01
Since AAT = I, AT is the inverse of matrix A which shows that the matrix A is orthogonal. O

1.1.4. (a) Transform the matrix A into a coordinate system in which A is diagonal, with the diagonal elements
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1.1.5.

increasing from top to bottom. Write down the transformation matrix and the diagonalized A

0 — 0 0 O
t 0 0 0 O
A=10 0 2 0 O
0 0 0 1 —2
0 0 0 ¢ 1

(b) A matrix B has real eigenvalues. Does it necessarily follow that B is hermitian? Prove the statement
or give a counterexample.

Solution:

Lets find the eigenvalues of the matrix A. The determinant of (A4 — AI) is

A —i 0 0 0

i =X 0 0 0

0 0 2-X 0 0 [=XA=2*A=1)A+1)=0
0 0 0 1-X —i

0 0 0 i 1-A

The solution to the above equation will give A = {—1,0, 1, 2,2} The normalized eigenvector correspond-
ing to each eigenvalues are.

1 0 —1 0 0
1 0 1 0 0
0 ) 0 0 —1
0 1 0 0 1

o the transformation matrix to transform A to a diagonal matrix is

i 0 —i 0 0 - 1.0 0 0
10 1 0 0 0 00 —i 1
P=Yg10 0 0 1 0 and its inverseis P~'=Y 5| i 1 0 0 0
0 i 0 0 —i 0 02 0 0
01 0 0 1 0 00 4 1

The diagonalization of A is done with P~ AP which is a diagonal matrix.

All matrices with real eigenvalues may not be hermition. Lets for example consider: <(1) 1) Its

eigenvalue is 1 with multiplicity 2, which is real but the matrix is not Hermitian as:

GD-6D6 1)

O

Find the normal modes and normal frequencies for linear vibrations (i.e. vibrations in the horizontal
direction, as drawn) of the (over)simplified “C'Osmolecule” modeled by the collection of masses and
springs sketched below.

Solution:

If we suppose the displacement of each mass from their equilibrium position to be 1, x5 and z3, then
the kinetic energy of the system is the sum of kinetic energy of each masses which is:

T =Y,Mz:? + Yymas? + Yy Mais?
And the potential energy of the system would be:

V = Yoki (22 —21)” + Yok (w3 — 22)? + Yok (23 — 21)
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M K, K, M
J"' |'|Ill,--|'||ll,I

I||II.I||II,.|
VY .—’HM

AMMAAMAAAAAAAAA
VVVVVVVVVVVV

*a'v‘n'v‘n'v‘a'n.r*n'v‘n'v‘

Ky

__‘__

Now using the Lagranges equation of motion:

% (a(z(;:;m) B 6(’1(;;1/)

Since T is free of x;s and V is free of #; we can write the above expression as:

d (or\ oV

calculating the above terms we get.

Mii"l = —[(kl + kz)l’l — kl.’EQ — ]ﬂgxg]
m:cg = 7[ 7k1x1 + 2k1$2 — kll’g]
Mz = —[ —kox1 — k129 + (kl + k2)$3]

The above set of relation can be written in matrix form as.

M 0 0 (Enl k1 + k2 —kl _kQ I
0 m 0 {EQ = — —kl 2k1 —kl T
0 0 M T3 —ko —k1 ki1 + ko xs3
If we suppose that the motion is perfectly harmonic with frequency w and suppose x, = ae”*** Then
¥ = —w?z;. Using these values in above relation we get.
M 0 0 €1 ki+ ks —k —ko 1
—w2 0 m 0 ) = — 7]"»'1 2k1 71€1 i)
0 0 M I3 7k2 7]471 kl + kg I3

Writing above equation with matrix form as (B — w?A)x = 0, we can say that this equation has non
trivial solutions for |B — w?A| =0

waQ + k’l + k'2 7]431 71€2
—kl 2]{)1 - mw2 —k‘l =0
—ko —kq —Mw? + k1 + ko

= —2Zky — 23 (—Mw® + k1 + ko) — k2 (2k1 — mw?) + (2k — mw?) (—Mw? + ky + k2)” =0

The solution for w? for this equation are:

1 1
{0, M (kl + 2]62) s m (2Mk‘1 + k1m)}
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The first normal mode with w? = 0 implies that the system perform oscillation such that the relative
position of the masses do not change meaning each mass oscillates in same direction with same frequency.

The second normal mode w? = Y, (k1 + 2ks) doesn’t depend upon the mass in the middle. So the
middle mass remains at rest and the two mass at in the end perform oscillation with same frequency
but opposite phase.

The third normal mode w? = 1/Mm (2M k1 + kym) doesn’t depend on the second spring with spring
constant ks meaning the middle mass oscillates and the mass in the either remain at rest. (|

1.2 Homework Two

1.2.1. An electrical network consists of N interconnected nodes. Each pair of nodes (i, j) is connected by a

resistor of resistance R;; = min(7,j) + 2 max(i,j), for 4,5 = 1, ..., N. Let V; be the electrical potential
of node i, and choose the zero level of potential to set V; = 0. Then Kirchhoff’s laws for the other
nodes in the network can be conveniently written as

periiL

, for i =2, ..., N where I; is the current flowing from node i to some external circuit. Suppose N = 100
and the external connection is such that current flows out of node 2 and back into node 1, so I1 = 1,
I, =1, and I; = 0 for i > 2. By solving the above (N1)-dimensional matrix equation, calculate the
total resistance between nodes 1 and 2.

Solution:

Expanding the i*" current value

Vo—-Vi  Vs—-V, V =V
=" ¥B-Vi, o W-h

Ry Ri3 Rin

1 1 1 Va Vs Vi
— (ot |+ =

<R12 Ris R1N> "Ry Rus Rin

Smililarly expanding all others we get the pattern. So the equivalent matrix would be.

1 1 . 1 1 1 . 1
§1 (R12 + Ri2 + + RlN) Ri2 Ri3 Rin
2 1 _ 1 1 . 1 1 . 1
I3 _ Ry <R21 + Ras + + RzN) Ros Ran
1 1 1 1 1 o 1
In Rn1 Rn2 Rns3 (RNl + Rn2 + + RNN)

This is the Matrix equation relating the Ohm’s law where I = %. The 1/R Matrix is N x N matrix.
But since V; is zero and I; is known we can eleminate the first row and column of 1/R Matrix to get
(N — 1) Dimensional Matrix

Vi
Va
V3
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1.2.2.

import numpy as np
from numpy import linalg as LA

num_nodes = 100
#Construct the matrix
N = num_nodes
def Res(i,j):
return min(i,j) + 2*max(i,j)

# Construct the R matrix with every elements except the diagonals

# int(i!=j) returns 1 for non diagonal places and O for diagonal

# places so all the diagonal elements

R=np.array ([(int(i!=j)*(1/Res(i,j))) for i in range(1,N+1) for j in range(1,N+1)]).reshape(N,
N)

# Since 1in the matrix we see that the diagonal
# elements are simply negative sum of all other
# elements in the matrix, we sum them to get the
# diagonal elements and put them back to matrix
Diag = [-sum(R[i]) for i in range(N)]
np.fill_diagonal (R,Diag)

#Deleting the first row and colums
R = R[1:,1:]

#Initializing the Current column matrix to zero
I = np.zeros(N-1).reshape(N-1,1)

# The first value of current I_2 is indexed at zero
# so I[0] means the I_2 which is 1
If0] =1

# Solving the matrix equation to get the potentials at all nodes
V =LA.solve(R,I).reshape(N-1)

# Since our zero index in program is index 2 for current and voltages
# the voltage at node 2 is V[0]

v2 = Vv[o0]

print ('The electric potential at mnode 2 is {:.4}V'.format(V[0]))

# The current in the whole circuit is 1A so the equivalent resistance
# can be calculated by Ohm's law. R_eq = (V1 - V2) / I, since V1 = 0

# The total resistance of circuit is just R_eq = -v2/1 = -V2
print ('The equivalent Resistance of circuit is Q{:.4}'.format (-V[0]))

The electric potential at node 2 is -0.9442V
The equivalent Resistance of circuit is 0.9442Q g

The data file hw2.2.dat on the course Web page contains (hypothetical) experimental data on the mea-
surement of a function y(x). The N data points are arranged, one measurement per line, in the format

xi yi (measured) oi

where o0; is an estimate of the uncertainty in the i-th measurement. It is desired to find the least-square
fit to the data by polynomials of the form

N
y(@) =Y aja’™!
j=1

for specified values of m, by minimizing the quantity
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As discussed in class (and in Numerical Recipes, pp 671-676), write down the overdetermined design
matrix equation that results from writing y(z;) = y;,

Aa=05>

, where A;; = %1 , by = g— (so the measurement undertainties are included in each row), and a is
the vector of unknown coefficients. Solve this system using singular value decomposition (svdemp in
Numerical Recipes, svd in Python or Matlab) to obtain the best fitting polynomial for each of the cases
m = 2, 4, 7, and 13. For each m, give the values of a; and X2, and plot the data and the best fit on a
single graph.

Solution:

#!/usr/bin/env python3

import numpy as np

import numpy.linalg as LA

import matplotlib.pyplot as plt

from matplotlib2tikz import save as tikz_save

class LeastSquare():
mlist = [2,4,7,13]#6,7,8,9,13]
pltcnt = len(mlist)
pltprm = 221
clr = 0.1 #clearence

datafile = './data/hw2.2.dat'
slc = 500 # slice length to test for fewer data points
epsilon = le-3 # zero threshold for svd inverting

def __init__(self):
self.readfile ()

def readfile(self):
read = np.genfromtxt(self.datafile)

self.x = read[:,0]; self.x = self.x[:self.slc]
self.y = readl[:,1]; self.y = self.yl[:self.slc]
self.sd = read[:,2]; self.sd = self.sd[:self.slc]
self.err = self.sd.reshape(self.slc,1)

return read

def construct_A(self,M):
#Reform x shape to column shape
xcol = self.x.reshape(self.slc,1)
# Same for error values
err = self.sd.reshape(self.slc,1)

# initialize the first column of the A matrix
A = (np.zeros(self.slc) + 1).reshape(self.slc,1)/err
for m in range(1,M):

A = np.append(A,xcol**m/err,1)

return np.matrix(A)
def construct_b(self):
coly = self.y.reshape(len(self.y),1)

return np.matrix(coly/self.err)

def get_svd_inverse(self,M):
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U,W,V = LA.svd(M)
WI_star = []
for wi in W:
if wi < self.epsilon:
WI_star.append (0)
else:
WI_star.append(1/wi)
WI = np.diag(WI_star)
r,c = M.shape
inc_prm = r-c
cm = np.matrix(np.zeros(inc_prm*c) .reshape(c,inc_prm))
WI = np.hstack([WI,cm])
return V.T*WI*xU.T

get_polynomial_values(self,aj,x):
y = np.zeros(len(x))
for j in range(len(aj)):
y += ajl[jl*x**j #since our index starts at 0, it works
return y

get_coefficient (self ,m):

A = self.construct_A(m)

b = self.construct_b()

ATl = self.get_svd_inverse(A)

a = AIxb

#print ('a shape is {}'.format (a.shape))
ar = np.squeeze (np.asarray(a))

return ar

get_chi_sq(self,true,predicted,error):
return np.sum(((true-predicted)/error) *x*2)

get_legend(self,aj):
j=2
lg = r'{:.2} + {:.2}$x$"'.format(aj[0],ajl1])
for a in ajl[j:]:
sgn = ' +
if a < 0: sgn = "'
t = sgn + r'{:.4}$x" ' . format(a)+'{'+'{}' . format(j)+'}$"’
lg += t
jo4= 1

return 1lg

draw_graph (self):

cnt = 0

for m in self.mlist:
#plt.subplot(self.pltprm+cnt); cnt+=1

aj = self.get_coefficient(m)

#print ('ar was ',ar)

x = np.linspace(l.1*min(self.x),1.1*max(self.x) ,500)
y = self.get_polynomial_values(aj,x)

prediction = self.get_polynomial_values(aj,self.x)
chisq = self.get_chi_sq(self.y,prediction,self.err)

plt.plot(x,y,'r',linewidth='2.5"',label=self.get_legend(aj))
plt.legend()

plt.plot(self.x,self.y, " 'go")

plt.title('For M = {} $\chi~2$={:.3e}'.format(m,chisq))
plt.savefig('M{}.png'.format(m))

plt.show ()

plt.suptitle('M degree polynomial least square fit by SVD')

14
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#tikz_save('Least square plots.tex',figurewidth="14cm",figureheight="9cm")
plt.show ()

if __name__ == '__main__"':

LS = LeastSquare()
LS.draw_graph ()

For M = 2 x?=4.437e+05

= -0.055 + 1.6x

For M = 4 y?=4.364e+05

—— 0.049 + 0.75x-0.373x? + 1.459x3
7.5 4

5.0 A

2.5 1

0.0 1

—2.5

—5.0

—7.5

T
-1.0 —0.5 0.0 0.5 1.0

The a; values are shown as polynomial coefficient in the legend of each plot and the x? values are given
at the top of each graph. In each case the continuous line is the fitted polynomial and the scattered
dots are the values read from file. O

1.2.3.
Solution:
This Question was mostly solved by use of Sympy package in python.

import numpy as np
import numpy.linalg as LA
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For M = 7 x?=3.759e+05

10.0 ~

7.5 1

5.0 A

2.5 A

0.0 1

—2.5

—5.0

TS5 — 1.0+ 2.3x + 17.89x2-5.279x3-46.18x* + 6.187x° + 29.69x5

T
-1.0 —0.5 0.0 0.5 1.0

For M = 13 ¥?=3.724e+05

4+ 83.32x5 + 125.6x%-194.8x7-34.33x% + 193.6x%-70.54x10-65.76x11 + 49.57x12

15

10 A

from scipy.integrate import quad

import sympy as smp
import sympy.functions as smf
import sympy.physics.quantum.constants as qc

The function ¢, (z) was defined to get any order function

def fai(self,n):
x = self.x; b = self.b
of = smp.Rational(1,4)
oh = smp.Rational(1,2)
A = (b**2/smp.pi)**of*x1/(smp.sqrt (2**n*smf.factorial(n)))
return (smp.exp(-oh*b**2*x**2)*smf.hermite(n,b*x)) * A

So for example this function gives for fai(n) as

2%%6_ FH, (8a)

(NS}
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We wish to approximate the energy eigenfunctions of a one-dimensional square well by ex-
panding them in terms of a finite ( N-dimensional) subset of harmonic oseillator wavefunctions.
The square well is defined by the potential

)0 (x| <a),
V{”—{ Vo (2| > a).

The harmonic oscillator potential is Vi, (x) = %k.r?', where we will take k = 215/a® here. As
discussed in class, solving the problem entails diagonalization (e.g. using the Python function
eigvals or the Numerical Recipes functions tred2 and tqli) of the Hamiltonian matrix
H = (hpm), where

ﬁ? d?

hnn‘=={quf|ﬂ1}==\/‘dﬁ:¢§{3j {_-EEE EEE

+ V{I}] Om ()

and ¢y, (x) is the n-th harmonic oscillator wavelunction:

a2\ -
ol = (?) V2l e H, ()

with g1 = mk/h2.

Use the recurrence relations given in Riley & Hobson, p. 373, to generate the H,,, and the
differential relations (same page) along with the trapezoidal rule, where needed. to compute
the matrix elements fyypp.

Hence, by diagonalizing the matrix H, determine the first (and only) two energy levels Ey
and E of a square well with Voa® = 272 l;"m._ for three different values of N: (a) use ¢y, ..., dy
as a basis (N = 5); (b) use dg.....dg (N = 10); and (¢) use ¢g,....de (N = 20). In each
case, compare vour answers with the exact values

r? TZ
! Ep=1.80—; .
T

Eg=0.53—s; .
TILEr

Then the hamiltonial operator function is defined as.

def H(self,psi):
hf = smp.Ratiomnal(1,2)
x = self.x; m = self.m; hcut = self.hcut
hctm = -hf*(hcut**2)/(m)
return hctm * smp.diff(psi,x,2) + self.V(x)*psi

[N

Writing A, = 2;%7 \/ng!ﬁ | and after operating ¢,(z) by Hamiltonian operator and using the recurrence
relation we get.
A ﬁ2z2
A e 2
Hoy(w) = = —— (=50 (8 Hy (Bx) — 4BpaHy1 (B2) +4p (p — 1) Hp— (Bx) — Hy (B2)) + kma®Hy, (5z))

If we evaluate the functions operated by at numeric value 0.

[3222

Ape” 2
2m

Heo(z) = (—B2n? (B°2* — 1) + kma?)
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Evaluating function ¢o(z) we get.
822

¢o(x) = Age”™ 2

Now to get the hamiltonian matrix element we do.
a
oo = [ 63(2)Hn(a)do

Putting a = 1,m = 1 and h = 1 to work in the Energy units of P we get k=4 [ =4 Evaluating

ma?
the integrals at these values we get. hog = 0.9544 We can construct the matrix similarly for every value
of p and ¢ for the dimension given. Getting eigenvalues from the constructed matrix gives the Energy
h2
ma?

level in the units of

For N =5

0.954500  0.000000 —0.763548 0.000000 —0.396751
0.000000 2.215608  0.000000 —2.468673  0.000000
—0.152710  0.000000  2.072950  0.000000  —3.085998
0.000000  —1.058003 0.000000  2.146257  0.000000
—0.044083  0.000000 —1.714443 0.000000  3.164405

The eigen values for this matrix is:
[0.109385071685, 0.564434747324, 1.09686038844, 3.79742982845, 4.98561012119)

Which means the first two energy level are

12 72
Eo=0109—; Ey =0.564——
ma ma

For N = 10
h? 5 I
Ey=724x10"—5 E; =1102x10°—
ma ma

The complete program is O

#!/usr/bin/env python3

import numpy as np
import numpy.linalg as LA

from scipy.integrate import quad

import sympy as smp
import sympy.functions as smf

class EnergyLevels():

#define constants

ca = 1 # potetial well half width = 1

cm = 1 # mass

chc = 1 #hbar = 1

cv0 = 2*chc**2/(cm*ca*x*2) # constanv VO inferred from conditions
ck 2*cv0/(ca**2) # harmonic oscillator constant

cb (cm*ck/(chc**2))**(1/4.) # beta parameter.

dimlist = [5,10,20] # dimension list
#define vars and consts
b,fi,k,m,p,q,x = smp.symbols('beta,phi,k,m,p,q,x',real=True)

#special variables
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if

hcut = smp.symbols('hbar',real=True)
ndim = 5
lim = 1

# constants substution dictionary. This should only affect the
# scale of the output value.
subd = {b:cb,hcut:chc,k:ck,m:cm}

def __init__(self):
pass

def V(self,x): #potential function
k = self.k
return smp.Rational (1,2)*k*x**2

def fai(self,n):
x = self.x; b = self.b
of = smp.Rational(1,4)
oh = smp.Rational(1,2)
A = (b**2/smp.pi)**of*1/(smp.sqrt (2**n*smf.factorial(n)))
return (smp.exp(-oh*b**2*x**2)*smf.hermite(n,b*x)) * A

def H(self,psi):
hf = smp.Rational(1,2)
x = self.x; m = self.m; hcut = self.hcut
hctm = -hf*(hcut**2)/(m)
return hctm * smp.diff (psi,x,2) + self.V(x)x*psi

def getf(self,p,q):
php = self.fai(p)
phq = self.fai(q)
fx = php * self.H(phq)
return fx

def geth(self,p,q):
fx = self.getf(p,q)
fx = fx.subs(self.subd)

hpg = self.integrate(fx,-self.ca,self.ca)
return hpq

def integrate(self,fx,a,b):
flx = smp.utilities.lambdify(self.x,fx)
v,e = quad(flx,-self.lim,self.lim)
return v

def construct_H(self,n):
H = np.zeros(n*n) .reshape(n,n)

for v in [(p,q) for p in range(n) for q in range(n)]:
pP,q =V
Hlpl[q]l = self.geth(p,q)

return np.matrix(H)

def get_energy(self):
for m in self.dimlist:

hmn = self.construct_H(m)
evl,evc = LA.eig(hmn)

evl = np.squeeze(evl)

evl = sorted(evl)

print (evl)

#print ('For N = {} EO = {:.3e} and E1 = {:.2e}'.format(m,evl1[0],evl1[1]))

__name__ == '__main__":

EL = EnergylLevels ()

19
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EL.get_energy ()

1.3 Homework Four

1.3.1. Use contour integration to compute the integral

1

I*/ dxr
N (a2 4+ 2?2)V1 — 22

where a is real and the integrand has a branch cut running from —1 to 1. Sketch the contour you have
chosen and carefully justify your reasoning to evaluate or neglect each portion of the total integral.

Solution:
We can write the above integral as

L'y

\ng

ia

Fl/\

A

dz
f{ (a2 +22)V1— 22

Figure 1.1: There are poles at £1 and +ia .Since the function
is even the integral along two vertical lines will be equal and
opposite and vanish. The integral along the bottom horizontal
line is what we want, and the integral along the top horizontal
line will vanish because at large value of z; m =0. In
the closed contour integral only leaves the integral along the z
axis from —1 to 1.

—1+e€

1—e€

[EE

Re(2)

Ydz =1 — 2m%Res(1) + /f(z)dz + /f(z)dz + /f(z)dz — QwiiRes(—l) (1.2)
ry I Is

Resf(—1) = lim — lim =0
J(=1) s (a? + 22)v/1 — 22 o (a2 +22)V1+2
142 142
R 1) = lim — =1 =0
esf () 2 (a2 + 22)V/1 — 22 2 (a®>+22)V1+ =
The only terms left in the RHS of Eq. (1.2) is I
dz
I= = 2miResf(ia
7{ (a? + 22)V1 — 22 flia)
= 2ri lim Sl
z=ia (z + ja)(z—1a)V1 — 22
- 211
" 2iaV/1 + a2
T

av'1+ a?
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1.3.2.

1.3.3.

1
So the required integral is [ d =T . O
1

(a2+4x2)V/1—22 av1+a?

Work out the details of the contour integral in the context of quantum scattering problem. The problem
involves evaluating the integral

o0 . d
x sin xdz
1(0)2/7;62_02

The integrand has poles on the real axis, and so is only defined as a Cauchy Principal value, deforming
the path of integration to avoid the poles using small semicircles of radius € centered on x = 0. State
clearly the assumptions you make and the contours you choose, and show that

I(c) = wcoso.

Solution:
There are two singular points at +o. If we write the function as

f(2) = =

gt =t [ s

z

Taking this contour, the, integral along the big semicircular contour will go to zero by Jordan’s Lemma.
The integral along the line includes two semicircular hops.

omil Res 2m Res(o

R —oHe —oHfe o+e o
/f(z)dz /f )dz + f(z dz+/ dz+Z dz+/
—R

2
= ;rz (Res(—0o) + Res(o

271 . zet? . ze'®
:{hm( )+llm< )]
2 |lz=—0c\z—0 z—=—oc \z+o0

_ _Jefio N o.eia
-7 —20 20
o efia' N eia
N 2 2

= micos(o)

Our original integral was I(0) = Im [§ f(z)dz] =Im[micos(c)] = 7 cos(). O

(a) Find the series solution of the equation
(1= 2?)y" () — 2y (x) + ny(z) = 0

that is regular at = 0. Under what circumstances (for what values of n) does the series converge
for all x?
Solution:

o0
Let the solution be y(z) = Y a,2"T*; where ag # 0. Then the first two derivatives are.
r=0

o oo

y'(z) = Z(T + k)apz"tF L y'(x) = Z(T +E)(r+k—1Daya"tF2

r=0 r=0
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Im(z)

Ir
L.
_R,—a—e —U—I—e, o — € o+ €

22
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Substuting these back into the given differential equation we get.

o0 o0 o0 oo
Z(r +k)(r4+k—Daz"t*2 - Z(r +k)(r +k—Dayz"tF — Z(r + k)ayz"tF + Z na,x" ™ =0
r=0 r=0 r=0 r=0
If we take out two terms from the summation sign in the first expression, we get
k(k — Daoz" "% + k(k 4+ az™ ' + i('r + k) (r4+k—1)apz" 72— i(r +E)(r+k—Dapz"TF — i(r + k)arz"TF + i nZa,z" T =0
r=2 r=0 r=0
(o] o0
Since r is a dummy index > (r 4+ k)(r +k — 1)a,2"T*~2 can be written as > (r+k+2)(r +k +
r=2 r=0
a, oz"tF
k(k — l)ao:vk72 + k(k+1) alm - i {(r+k+2) (r+k+1arqs2 —(r+k)(r+k—1a, — (r+k)a7\wr+k +n2a7\} 2" TF =0

Since we are expecting solution that is to be true for everyvalue of z every coefficient of each z"+*

should go to zero. If it didn’t then we would have a polynomial of degree r + k& which would give
r + k solutions for x and would not be true for any general x other then the solution to it.
Equating the coefficient of *~2 to zero we get k(k — 1)ag = 0;= k = {0, 1}.

If we choose k = 0 then the coefficient of z¥~! which is k(k + 1)a; goes to zero. So a; can be any
arbitrary number. If we choose k = 1 then the coefficient of 2%~ which is k(k + 1)a; = 0 requires
that a; = 0. So

| arbitrary if £=0
“=10 if k=1

Also the coefficient of "% should be zero for every value of r > 0. Equating the coefficient of
27Tk =0 we get
r+ k)2 —
r+k+2)r+k+ Dargo = ((r + k)% —n? a,; = Qpio = ( ar
( It Jara = ((r+k)* —n%) S A
fork=0
for k=1
r2 _ 2
RO )
2 a _ (r+D7 - ap; ap =0
— r+2 = T oN/ L o\ drs 1 —
ap = iao (r+3)(r+2)
2! 2
9 1—n
1—n as = ——ao
a3 = —(——ax 3'
3' 22 _ TLQ
22 — n? n?(n? — 22) ag = ay
ay = 4.3 a9 = Al Qg 3'
. : 2 _ 2 -1 32
32 _ 2 (nz—l)(n2—32) 4y = 3 n g = (” )(n 3 )ao
as = a; = aq 5 . 4 5'
5-4 5!
a5 = 0
The solution then is
The solution then is
n2 n2(n2 — 22
yo(a:)zao{l—,x2+(4,)x4+--~} -1, @W2-3)n*-1) , ‘
2. . yl(x):ao xTr — 3' x + 5' x +

271 2732 271
+a1{x—n3' x3+(n 5)'(71 )a:5+~~-}
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The two solution obtained above are linearly dependent so, we will analyze convergence for the
first solution. yo(x) has a form of

yo(z) = ap{Even Function of x} + a1{0dd Function of z}

Foe n = Even Integer, the Even function will be a n*" degree polynoial and similarly for n being
odd.
For the convergence of series, we get from the recurrence relation,
2 2
b2 _ lim 2,2 _ rt—mn 2 2

llm ———— 2 ==z

i
N T, rh a, r=o0 (1 + 2)(r + 1)

r—00

t;j < 1 which implies that 22 < 1;= |z| < 1 For this series to converge for

For convergence lim
r—00

all values of x, the above ratio should be less than 1 for some value of n, but it doesn’t happen for
any n. So the series can’t be convergent for all values of . |

(b) Find the series solution of the equation

4oy + (1= p*y =0

Solution: -
Let the solution be Y a,2""* where a # 0. The Second derivative is
r=0
y'(z) = Z(r + k)ayz" T y'(z) = Z(r +k)(r 4k —Dapz"t*2
r=0 r=0

Substuting these back into the given differential equation we get.

o0

24 +k)(r+k—1a T+k+21* "t = 0; éz (r+k)(r+k—1a,+(1—p*a,]z"F =0
r=0

Since we seek the solution of differential equation which is true for every value of z, it requires
that every coefficient of "% vanish.

{4r+K)(r+k—1)+(1—p*)}a, =0; for r >0
Since we suppose ag # 0,
dk+r)k+r—1D)+1-pH) =024k +7r)? —4k+r)+ (1 -p*) =0;

The solution to the quadratic equation in k has the solution

4442 —4-401-p?)

k —
+tr 2.4

1
; ékJrr:i(l:I:p)

Putting back the value of x + r in our original solution we get,

e} o0 oo oo
y(x) = Z apz" T = Z apx21Ep = (Z Clr) 22137 = ¢31EPl Where ¢ = Z a,-(Constant)
r=0 r=0 r=0

r=0

So the two independent solution for the equation are y(z) = & 2P and y(z) = &a2 (P, O
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(¢) Given the one solution of the differential equation

Yy’ —2xy =0
is y(x) = 1, use the Wronskian development to find a second, linearly independent solution.
Describe the behavior near x = 0
Solution:

Comparing with y” + p(z)y’ 4+ ¢(z)y = 0, p(x) = —2z So,

/p(x)dx = —2?

We have y; () = 1. The second solution is

x2 :U4

3 1’5 1.7

R B RaE
310

The function is well defined near x = 0. O

1.3.4. A function f(z) is periodic with period 27, and can be written as a polynomial P(x) for 7 < z < a and
as a polynomial Q(x) for a < x < 7. Show that the Fourier coefficients ¢, of f go to zero at least as fast

as 7/, as n — ocif P(a) = Q(a) and P(m) = Q(m) (i.e. f is continuous), but only as 1/n otherwise.
Solution:

The fourier coefficeent is given by.

a ™
Cn z/f(z)efim"dzz /P(:c)eii"mdx—|—/Q(x)eiimd:c
Integrating by parts

:mezr;ﬁQ :zr [P /Q -

),p( ))Cos nm)

= | (Pla) — Q@)™ + (Qm)eine / o
= [(P@) — QU@)e ™ + (Q(r / Q)

If we continue on this way.

1

n == [(P(@) = Q@)™ + (Q(m) = P(=m)) cos(nm))] +
TP @ - Qe+ (@)~ Pm)eostom)] + 4 [ PO@ T 1 [
(1.3)

Let the order of polynomials P(x) and Q(z) be k; and ko respectively, are polynomials the derivatives
will terminate when r > max{ki, ko} We will then have a expression for ¢, which is a polynomial of %

If P(a) = Q(a) and P(—7) = Q(m) the first term of the Eq. (1.3) will vanish and c,, goes at least as .
It can go faster to zero if also the derivatives are equal then second term goes away. If the function do
not agree at the boundaries then the first term of the ¢,, does not vanish and ¢,, goes only as fast as % g
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1.3.5. (a) Find the Fourier series Y -, b, sin(nmz) for —1 < z < 1 for the sawtooth function

_f -1-z (-1<2<0)
f(x){ 1—z ( 0<z<l (1.4)
Solution:
The period of the function is T' = 2, The fourier coefficient can be calculated as
) 0 1
by = T /f(m)sm(nmc) =— /(1 + ) sin(nra)dx + /(1 — z) sin(nrz)dr
21 0
_ [_1 N cos(nﬂ')} N {1 N cos(mr)]
nmw nmw nmw nw
_2
Conm
So the series solution is f(z) = Y o | -2 sin(nmz). O

(b) Plot the partial sums Sy (z) = Zi:;l by, sin(nmx) of the series for 0 < « < 1, in steps of 6= = 0.0005,
and N = 1,5, 10,20, 50,100 and 500. What is the maximum overshoot of Fourier series in the case
N =500, and at what value of z does it occur?

Solution:
The maximum overshoot for N = 500 occurs at x = 0.0020 and the value of overshoot is 0.1790. (I

1.4 Homework Five

1.4.1. Use contour integration to find the inverse Fourier transform f(t) of the function

Flw) = g sin wa

s w

(where a > 0), for all values of ¢. Recall that F was obtained as a Fourier transform of a step function
with a discontuinity at |t| = a. What is the value of f(a)? (Determine f(a) from the integral — don’t
appeal to the integral properties of Fourier Transforms!).

Solution:

Writing it as

2 sinwa 1 7 2sinwa . 1 2 7 eiwa _ p—iwa
t) = j—;fl \/7 _ / \/7 77,wtd _ \/7 / - = 7zwtd
1) ( T w ) V2r T @ VoV m 2w w

1 ® i(a—t)w ® —i(a+t)w
o | [ Tt [
2im w w

— 00 — 00

I Iy
= 5 [h -1 (15)
2
Considering the integral

R
i(a—t)z i(a—t)z i(a—t)z i(a—t)w i(a—t)
A:j{e dz:/e dz—i—/e dz—l—/e dw—i—/e dw
c 2 z z w w

Tr . -R €

I
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N=1,2,=0.5 0, = 0.13662 N = 5; x5 = 0.1665 O,,, = 0.174174

oo
O N = O
| | | |
o
Ot —
| |

I I I I I I O B I I I I I
0= 1842, Oeto91 P, =bS177699 N-© 2002, =0H47906,,, D@ 178445
1] 1
0.5 - /\/\'\\ 0.5 -
0 0

N-Q& 5002, =@H1990,,, D& 178%H7 0 1002 2, ©.0148,, =13178968

1 1
0.5 0.5
0 0

I I I I I I
0.0 50022, 0.6.0006,, 06 178b 0.0 02 04 06 08 1.0

1,
0.5
O,

/

\
00 02 04 06 08 1.0

Figure 1.2: Partial Fourier series plot for Eq.(1.4) (22[:1 by, sin(nmx)) for different N with Max overshoot of
O,, at x4

If we take limit as R — oo and € — 0 the last two terms of the integral converge to the integral along
the w axis. If the contour is in the upper half of the plane, then the first term of above integral goes
to zero by Jordans Lemma if (¢ —t) > 0. But if (a —t) < 0 then the integral goes to zero only if the
contour is in the lower half of the z plane



CHAPTER 1. MATHEMATICAL PHYSICS 28

Ifa—t>0;, t<a Ifa—-t<0;, t>a
Im(z)

€ Re(z)
, f
’ R Re(z b

—R —€

—
)

Y

As seen above
Also we can see

( 0 By Jordan’s Lem(ma |

1(a— i(a—t)z

A—Il‘i’%Z“r/ € dz =0 A=
R Z Te Z

0 By Jordan’s Lemma

ei(aft)z

dz = —2miResf(0)

1
; _ 1
=1 - §2mResf(O) =0 =1 — 527riResf(0) = —2miResf(0)
i(a—t)z i
= I — i lim 25 -0 = I} = —miResf(0)
z—0 z ei(aft)z
= I = mi (1.6) =1, = —milim 2 = —mi (1.7)
z—0 z

If t = a (with contour on top half,) then

miResf(0) —miResf (0

z(a t)z 7.a t)z
A—Il+/ dZ+/ dZ_I1+//—O:>11_O (18)
I'r

From (1.6) and Eq. (1.7) and Eq. (1.8) we get

i fa—t>0
L =<0 ift=a (1.9)
-7 ifa—t<0

Considering the integral

—i(a+t)z —i(a+t)z —i(a+t)z —€ —i(a+t)w R _—i(a+t)
Bog —dem [ e [ s [ o [ o
C y4 Tr z T z —R w € w

€

I
By similar arguments
T ifa+t<0

IL=40 ifa+t=0 (1.10)
—T1 ifa+t>0
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From Eq. (1.9) and Eq. (1.10) we get.

1
ift < —a; L=miand h=mi=1 — I, =0; f(t):T[Il—IQ]zo
i
1 1
ift =—a; L=miand h=0=1 —Ih=mi; f(t)=-—[I1-12]==
2mi 2
1
if —a<t<a;, L1 =miand Iy =—mi= 1 — Iy =2mi; f(t):T[Il—IQ]zl
i
1
if t = a; L =0and I, = —7wi = I; — I, = 7i; f(t):T[Il—IZ}:f
i
1
ift > a; I = —miand Iy = —7mi=1; — I, =0; f(t):T[Il—I2]:O
!
Combining all these we get
1 |t|<a
f={% |t=a
0 [t|>a
So the value of f(a) is 5 from the inverse fourier transform. ]

1.4.2. Find the 3 — D Fourier transform of the wave function for a 2p electron in a hydrogen atom:
U(x) = (32ma®) /2 ze/ 200

where a =
Solution:
Supposing A = (327a®)~1/? and in spherical coordinate system z = 7 cos(f). Also the volume element
in spherical system is d®r = r2sin(0)d¢dfd Also due to spherical symmetry we can write k - r =
kr cos(@)[Riley and Hobson pp 906] The fourier transform is then

U(k) =

7:362 is the Bohr radius, r is radius, and z is a rectangular corrdinate.

r/2a —ikr cos(@) 3

rcos( r3e”/2% sin(6) cos(0)e* <@ qgdr

vﬁ47

T 0
U (k) 2 / drr® e~/ () / df sin @ cos eFreos? — 3 e—r/(20) / d(cos ) cos fekr cos?
7T 0 T

Supposing krcos() = u du = sin(0)kdr

0 sinkr
3 _—r/(2a) —— ikru 3 _—r/(2a)
277 / drree { 30kr) / due } \/>/ drr’e a0er) ke
3 —r/(2a) |COSkr  sinkr
\/>/ drrte [ kr (kr)2

The integral of this function can be obtained with contour integral

With substitution 2z = 1/(2a) — ik and cos(kr) = Reet"

22 1 21 1
Wk ZA\/>R6 _— —A\/>Im _—
0 =afFine | |- ram
:A¢5s$%5_A¢515
wk(ﬁ+k2)3 ka(L_sz)z

2
Ay 256t RO
=0 0+ ak2a?)
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This gives the fourier transform of the function. O

1.4.3. Consider the solution to the ordinary differential equation

d?y
— +ay=0
dz? Y

for which |y| — 0 as |z| = oco. (This is the Airy equation. It appears in the theory of the diffaraction

of light.)

(a) Sketch the solution. Don’t use Mathematica!. Specifically, what behavior do you expect as
r — —oo and r — +00?
Solution:

O

(b) By fourier transforming the above equation, determine Y (w), te Fourier transform of y(x), and
hence write down an integral expression for y(z). (Hint: What is the inverse transform of Y’ (w))

Solution:
Let us suppose that the fourier transform of y(z) is Y (w). The fourier transform can be written
as
Flya) =) = [ sy ndo

Taking derivative of both sides with respect to w

Y'(w) = 4 / y(z)e “rdy = / y(x)i (e7™*) dx = —i / ry(x)e”“dr = —iF(zy) (1.11)

dw Ow i
—00 — 00 —00

Taking the fourier transform of both sides of given differential equation we get,

d?y

y'(x) + 2y =0;= F [de

}+f@wf@;

Using the property of fourier transform F(y”) = (—iw)?F(y) the fourier transform and using
F(zy) from Eq. (1.11) we get.

—iw)?Y (w) — Y (w) = 0; Y'w) = —iw?; Y'w) w= [ —iw’dw; w :e*i%
(i (@) = iY(@) = 5 3 = =it [ 8o = [ oo V)



CHAPTER 1. MATHEMATICAL PHYSICS 31

The solution for the Airy equation which is our original differential equation is just the inverse
fourier transform of this equation.

o0
1 —iw3 .
y(x) =F Y (w)] = — / e 3 e “dw
2
This gives the integral expression for the solution of the differential equation required. ]
1.4.4. Find the Green’s function G(z,z’) for the equation
d*y 9
@ —ky=f(z)

for 0 < z <1, with y(0) = y(I) = 0.

Solution:

The green’s function solution to non homogenous differential equation Ly = f(x) is a solution to
homogenous part of the differential equation with the source part replaced as delta function Ly =
§(z — 2'). The ontained solution is G(z,z’), i.e., LG(z,2') = §(x — z’). This solution corresponds to
the homogenous part only as it is independent of any source term f(z).

2
%G(Lx') — K2y =6z —2'); with G(0,2') = 0; and G(I,2') =0 forall0 <z’ <l  (1.12)
T

Since delta function §(z — z’) is zero everywhere except © = z’ we can find solution for two regions
x <z’ and > ’. For x < 2’ let the solution to Ly = 0 be y;(x) and for = > 2’ be yo(z) then

vy (2) — k*y1(z) = 0; for x < 2; vy (2) — k*ya(z) = 0; for x> o’
These are well known harmonic oscillator equations whose solution are
y1(z) = Asin(kz) + Bceos(kx); ya2(z) = Csin(kzx) + Dcos(kx)

By the boundary condition y;(0) = 0 and y2(I) = 0. These immediately imply that B = 0. Also since
the soution to the differential equation must be continuous y; (z') = yo(2’). Also integrating Eq. (4.28)
in the vicinity of =’ we get

0 By ontumty

/w+ (v - 2')dz; = ' (2,) — ¢/ (&) = 1

From three different conditions, (i) contunity at 2/, (ii) y2(I) = 0 and (iii) ¥} (z’) — y4(z') = 1 we get
following three linear equations. Usmg there parameters we get.

Ckcos(kx') — Dksin(kz') — Ak cos(kx') = 1
Csin(kz') + D cos(kx') — Asin(kx’) =0
C'sin(kl) + D cos(kl) =0
Which can be written in the matrix form and solved as.
sin (kx'
kcos(kz') —ksin(ka') —kcos(kz')| [C 1 C $(kl))
sin (kx') cos (kz') —sin(ka’) | |[D| = |0 = |D| = | —1sin(ka')
sin (k1) cos (kl) 0 A 0 A _sin (k(1-2"))
k sin (ki)
Giving
_ sin(ka') sin (k (I — 2'))

D:f%sin(kx/); A=—

~ ktan (kl)’ k sin (kl)
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So the required function is

sin (k(lfa:'))

y1(z) = — G sin(kx) if v <a

 ken(RD) (1.13)
yo(x) = “”(kkx ) (zg;((kk“lg — cos(ka:)) if x> 2

Eq.(4.29) gives the Green’s function whein can be used to find the solution to the differential equation

= /G(amx’)f(x’ dx’

The solution to the original inhomogenous differential equation can is given by the above expression in
terms of Green’s function. a

1.4.5. Poisson’s equation (in three dimensions) is V2¢ = 47Gp
(a) Let a(k) be the fourier transforms of ¢(z) and p(z), respectively show that:

~ AnGp
o=-5

and hence write down an integral expression for ¢(z).
Solution:
Taking the fourier transform ov Poissons equation we have

4rGF(p / VZe(r)e™ dr

Wriging in cartesian coordinate system k = ki + ky§ + kok and r = 21 + yj + zk we have

/ / / o(r + (iky)? + (ik.)?) e* " dadydz
= (—k2 — k2 — E)F(g(r)) = — |k[* d(k);
= Bk) = — 4rGp(k)

k.2

This gives the expression for the fourier transform for Poisson’s equation. This can be used to get
the expression of ¢(x) which is

drG 7 1 X .
x) = —p(k)e * a3k 1.14
o) = oo [ k) (1.14)
This is the expression for ¢(x) which is the solution to Poisson’s equation. O

(b) For a point mass at the origin, p(x) = md(z). Use the above to determine the expression for ¢(z)
Solution:
Taking the fourier transform of given density function

= / mé(r)e® T d3r = m; Integral of delta function is 1
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Substuting this in Eq. (1.14) we get

G T m ik g3, 4rGm 7 2 —iker g3
T)= —x e d’k ke "™ Tdk
R Y
This integral should give ¢(z) = —GTm for x >0 |

1.5 Homework Six

1.5.1. The function f(t;) adn F(w,) are discrete Fourier transforms of one anotherr, where t;, = kA w, =
3mn/NA, for k,n=0,--- ;N — 1. Show that.

(a) if f is real, then F(w,) = F*(4nf. — wy),
(b) if f is pure imaginary, then F(w,) = —F*(4n f. — wp),

where f. = 1/2A is the Nyquist frequency.
Solution:
The fourier discrete fourier transform fo f(¢;) by definition is

N—1 ) N—1 . N—1 ‘
F(wn) = f(tk)elwntk — Z f(kA)ekaA — Z f(kA)Qank/N
k=0 k=0 k=0

Taking conjugate of the above expression with w,, replaced by 4= f. — w, we get.

N-1 ‘ , . N-1 ,_/1\ ‘ g N-1 ‘
F*(47ch _ wn) _ Z f*(k‘A) (61(47rfcfﬁ)k:A) — f*(kA) 6—217r +2itn/N — Z f*(kA)(GQﬂ'znk/N)
if f is real then f*(kA) = f(kA) if f is pure imaginary then f*(kA) = —f(kA)
N-1 N-1
Fr(dnfe—wn) = f(RA)™™HN) = F(w,)  Fr(dnfe—wn) = Y —f(RA) (™™ /N) = —F(w,)
k=0 k=0
Which completes the proof. 0

1.5.2. (a) Let R; be a random sequence of real numbers, with R; distributed uniformly between —1 and

N—1 3
1. For N-piont discrete Fourier transform of R;: 7, = > Rjeg’r” k/N calculate the expectation
§=0
value and variance of the “periodogram estimate” of the power spectrum, Py, = |ri|? + |ry_x/|?,
fork=1,--- /N/2.
Solution:
Given Py = |rg|? + |rv—k|? we can calculate the expectation value of the function Py as

N/2 N/2 N-1 N-1

1 1 ’
<Pk> Z ‘Tk|2 + Z |TN k|2 _ N Z |rk|2 Parscvals:Thcorcm Z |Rk|2
0

0

This the expectation value of the function P, Now for the variance

N/2
1
Var(Py) = (PF) — (Py)* = N > lrel? + Irv—il?] Z Ry |?
1

The simplification should give the variance. g
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(b) Generate a sequence of random numbers with properties as in part (a), and compute P, numerically
using a fast Fourier transform with N = 32768. Plot first Py, then log,, P. against log,, k, for
k=1,---,N/2. How does this graph compater with the analytic expectations from part (a)?
Repeat the calcluations, averaging the data over an interval of width 65 centered on each frequency

data point, and plot the results.

(c) Repeat the computation in part (b) for random walkw; definde by wo = 0;

wj+1 = w; +R;. Can

you account for the differences in appearence between this graph and one you obtained in part

(b)?

Solution:

For the graph of uniform random the power is flat curve for up to a high frequency range but

Py vs (log) k for uniform random

200000
100000 1
_"'I T LR | LRARAL LA T
10° 10t 10° 10° 10¢
1e11 Pk Vs (log) k for random walk
2_
|:)_"'I TrTrTTT AL T T T
10° 101 10’ 10° 10
Py vs (log) k for running average of width 65
100000
50000
0_

100 10! 10? 103 10°

(log) Py vs (log) k for uniform random

105 i

103 i

10! 1
T T T T T T
100 10! 10? 103 10*

(log) Py vs (log) k for random walk

1011 J

lo? i

107 A
™ T T T T T
10" 10! 102 103 10°

(log) Py vs (log) k for running average of width 65

103 i
loﬂ J

10—3 J

100 10! 107 103 10*

for random walk the power at higher frequency is significantly lower than the power at lower

frequencies.

O

1.5.3. The file pendulum2.dat contains a chaotic data set generated as a solution to the equations of motion

of the damped, driven, nonlinear pendulum:

d*6

dt2 g dt

+ —— + sin() = g cos(wqt).
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Contains four column ¢,60,w and ¢ = wqt

(a) Plot the time sequence (t) for 1000 t 1250.
Solution:

8(t) for cahotic pendulum

-1
24
10:00 lDI50 llbﬂ llISG lEIOU 12I5U
time(s)
This graph shows the plot of §(t) vs ¢ for the time range ¢ = 1000 to t = 1250 O

(b) Use an FFT to compute the power spectrum P(f) of 6(t), where f is frequency. Use the entire
dataset, with a Bartlett data window, and plot P(f) with log-log axes for 0.01 < f < 2. Can you
identify any features in the plot?

Solution:

Power spectrum of &(t)

1077

1010

1013 4

10—16 4

1019 4

Power (arbitrary units)

1022 4

1025 4

10-2 10-1 107
frequency (Hz)

There is a sharp spike at frequency f = 0.106 which equals the frequency of the driving force. wq = 2/3

(¢) As in Problem 2, smooth the data by averaging over an interval of width 129 centered on each
frequency data point, and plot the results as in part (b).
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Power spectrum of 8(t) with running average of width = 129

1076 A
1079 A
10-12 4
1015 4
lo—lB -

1021 4

Power (arbitrary units)

1_0—24 _

1027 4

1072 101 100
frequency (Hz)

(d) Implement the alternative smoothing strategy of dividing the input dataset into a series of slices
each of length 16384, computing the power spectra of each, and then averaging all the individual power
spectra. Again plot the results as in part (b). Don’t forget the Bartlett windows!

Smoothed power spectrum of 8(t) with slice length = 16384

1075

108 +

1010

1012 4

Power (arbitrary units)

1014

Frequency(Hz)

On each of these power spectrum there the spectrum is flat for lower frequency and it drops sharply
after some frequency. A common feature in all of these graphs is the presence of a spike in power
spectrum at f = 0.106. This corresponds to the frequency of the driving force. |

1.5.4. A “corrupted” real-valued dataset may be found in the file corrupt.dat. It is a time sequence consisting
of two columns of data, j and c j , for j = 0,--- N1. The original data have been convolved with a
Gaussian transfer function of the form g ~ exp(j*/a®) (normalized so that 3 g; = 1), with a = 2048,
and are subject to random noiseof some sort at some level.

Find a filter to apply to the data, and plot your best-guess reconstruction of the original uncorrupted
dataset. Can you characterize the type of noise in the data?

Solution:
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Power spectrum of noisy signal

100 B
10—5 m
10—10 -
L T T T T T AL | T T T T L
10° 10! 102 10° 104
Recovered original signal
0.4
0.2 -
T T T T T T T
0 5000 10000 15000 20000 25000 30000
Noise signal
0.005 -
| |
0.000 - A LUl ' . ! ]
f
-0.005 -
T T T T T T T
0 2500 5000 7500 10000 12500 15000

The power spectrum of the corrupted signal has high value for lowe frequencies and it is significantly
small for higher frquency. At around 25" frequency bin the noise is completely dominates. So I chose
25" frequency bin as the cutoff point.

The recovered signal looks like a gaussian function. The recovered noise looks like a white noise. [



QuestionTwo

#!/usr/bin/env python3

import itertools

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt

class PowerSpectrum():

def

def

def

def

def

def

def

__init__(self,N):
self.N = N
self.pcnt =1
self.spl = 220
self.wid = 65

get_rnd_sequence (self):
rnd = np.random.uniform(-1,1,self.N)
return rnd

get_rnd_walk(self,sig):
wlk = list(itertools.accumulate(sig))
return wlk

get_power (self,sig):

r = np.fft.fft(sig); N = len(sig)

Pk = [np.abs(r[k])**2 + np.abs(r[N-k])**2 for k in range
(1,int(N/2))]

return Pk

plot_spectrum(self,sig,title=""):

Pk = self.get_power(sig)

k = range(len(Pk))

plt.subplot(self.spl+self.pcnt); plt.xscale('log');self.
pcnt+=1

plt.plot(k,Pk,lw=1); plt.title(r'$P_k$ vs (log) k for '+
title)

plt.subplot(self.spl+self.pcnt); plt.xscale('log'); plt.
yscale('log');self.pcnt+=1

plt.plot(k,Pk,lw=1); plt.title(r'(log) $P_k$ vs (log) k
for '+title)

get_run_average (self ,sig,wid):

hwid = int((wid-1)/2)

ravg = [np.average(siglk-hwid:k+hwid+1]) for k in range(
hwid,len(sig)-hwid)]

return ravg

machinge_periodogram(self,sig):
plt.subplot(self.spl+self.pcnt); self.pcnt +=1

plt.xscale('log')

prd,Pxx_den = signal.periodogram(rsig)
plt.plot(prd,Pxx_den,lw=1)
plt.subplot(self.spl+self.pcnt); self.pcnt +=1
plt.xscale('log'); plt.yscale('log')
plt.plot(prd,Pxx_den,lw=1)

def new_experiment (self):

rsig = self.get_rnd_sequence()
wsig = self.get_rnd_walk(rsig)
ravg = self.get_run_average(rsig,PS.wid)

plt.xscale('log'); plt.yscale('log')
rprd,rpxxden = signal.periodogram(rsig)
aprd,apxxden = signal.periodogram(ravg)
plt.plot(rprd,rpxxden)
plt.plot(aprd,apxxden)

plt.show ()

def experiment (self):
rsig = PS.get_rnd_sequence ()
wsig = PS.get_rnd_walk(rsig)
ravg = PS.get_run_average(rsig,PS.wid)

plt.xscale('log'); plt.yscale('log')
plt.plot(self.get_power(rsig))
plt.plot(self.get_power (ravg))
plt.show ()

if __name__ == '__main_
PS = PowerSpectrum(32768)

PS.spl = 320; PS.wid = 65

rsig = PS.get_rnd_sequence ()

wsig = PS.get_rnd_walk(rsig)
ravg = PS.get_run_average(rsig,PS.wid)
PS.plot_spectrum(rsig, 'uniform random ')

PS.plot_spectrum(wsig, 'random walk')

PS.plot_spectrum(ravg, 'running average of width {}'.format (PS
.wid))

#PS.machinge_periodogram(rsig)

#PS.new_experiment ()

plt.show()

Question Three

T H4.LdVHO
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#!/usr/bin/env python3

import itertools
import numpy as np
import matplotlib.pyplot as plt

from

matplotlib2tikz import save as tikz_save

class ForcedPendulum():

def

def

def

def

def

__init__(self,flname):
self.filename = flname
self.slc = 20

self.spl = 210; self.pcnt =1
self.read_file()

read_file(self):

content = np.genfromtxt(self.filename)
self.t = content[:,0];

self.theta = content[:,1]

self.omega = content[:,2]

self.phi = content[:,3]

return content

bratlett_window(self,sig):

N = len(sig); hlen = int(N/2)

sig2 = np.copy(sig)

sig2[0:hlen] = [k*sigl[k] for k in range(hlen)]
sig2[hlen:N] = [(N-k)#*sig[k] for k in range(hlen,N)]
wss = N*np.sum([1-np.abs(2*j-N)/N for j in range(N)])
return sig2/(wss)

get_run_average (self ,sig,wid):

hwid = int((wid-1)/2)

ravg = [np.average(siglk-hwid:k+hwid+1]) for k in range(
hwid,len(sig)-hwid)]

return ravg

plot_theta(self ,min_time=1000,max_time=1250):

tmin = min_time; tmax = max_time
minidx = np.searchsorted(self.t,tmin)+1
maxidx = np.searchsorted(self.t,tmax)+1

plt.subplot(self.spl+self.pcnt); self.pcnt += 1; plt.
tight_layout ()

tdata = self.t[minidx:maxidx]

thdata = self.theta[minidx:maxidx]

plt.plot(tdata,thdata,lw=1)

plt.title(r'$\theta(t)$ for cahotic pendulum');

plt.xlabel(r'time$(s)$'); plt.ylabel(r'$\theta(t)$ radians
D)

def

def

def

get_power (self,sig):

sft = np.fft.fft(sig)

N = len(sig)

power = 1/N*(np.abs(sft))**2

dt = (max(self.t) - min(self.t))/len(self.t)
dw = 2*np.pi/(Nx*dt)

omega = np.arange (N)*dw;

return power, omega

plot_power_spectrum(self,sig,minfrq=None,maxfrq=None) :

power ,omega = self.get_power(self.bratlett_window(sig));
freq = omega/(2%np.pi)
minfloc = np.searchsorted(freq,minfrq)+1 if minfrq != None
else 0O
maxfloc = np.searchsorted(freq,maxfrq)+1 if maxfrq != None
else len(omega)
maxpowloc = power.argmax(); maxpowfreq= freq[maxpowloc]

plt.subplot(self.spl+self.pcnt); self.pcnt += 1;plt.
tight_layout ()
plt.yscale('log'); plt.xscale('log');

plt.axvline (x=maxpowfreq,color='r',1s="':")
plt.plot(freq[minfloc:maxfloc],power [minfloc:maxfloc],lw
=1)

plt.title(r'Power spectrum of $\theta(t)$')
plt.xlabel(r'frequency ($Hz$)'); plt.ylabel('Power (
arbitrary units)')

plot_run_power_spectrum(self,sig,wid=129,minfrq=None,
maxfrq=None) :

runavgsig = self.get_run_average(sig,wid)
power ,omega = self.get_power(self.bratlett_window(
runavgsig)); freq = omega/(2%np.pi)

minfloc = np.searchsorted(freq,minfrq)+1 if minfrq != None
else 0O

maxfloc = np.searchsorted(freq,maxfrq)+1 if maxfrq != None
else len(omega)

maxpowloc = power.argmax(); maxpowfreq= freq[maxpowloc]

plt.subplot(self.spl+self.pcnt); self.pcnt += 1; plt.
tight_layout ()
plt.yscale('log'); plt.xscale('log');

plt.axvline (x=maxpowfreq,color='r',ls="':")
plt.plot(freq[minfloc:maxfloc],power [minfloc:maxfloc],lw
=1)

plt.title(r'Max power at $\omega$= {:2}, £={:2}'.format(
maxpowfreq*2*np.pi,maxpowfreq))
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plt.title(r'Power spectrum of $\theta(t)$ with running FP.spl = 110
average of width = {}'.format(wid)) #FP.plot_theta(); #tikz_save('images/Pendulum.tex')
plt.xlabel(r'frequency ($Hz$)'); plt.ylabel('Power ( #FP.plot_power_spectrum(FP.theta,minfrq=0.01,maxfrq=2)
arbitrary units)') #FP.plot_run_power_spectrum(FP.theta,wid=129,minfrq=0.01,
maxfrq=2)
def plot_sliced_power_spectrum(self,sig,slwid=16384,minfrq= FP.plot_sliced_power_spectrum(FP.theta,minfrq=0.01,maxfrq=2)
None ,maxfrq=None) :
tmin = self.t[0]; tmax = self.t[slwid]; dt = (tmax-tmin)/ plt.show()
slwid;
dw = 2%np.pi/(slwid*dt); omega = np.arange(slwid)*dw; freq .
=omega/(2*np.pi) Question Four

N = len(sig); padlength = slwid - N % slwid #!/usr/bin/env python3

longsig = np.concatenate((sig,np.zeros(padlength)),axis=0) . .
. import itertools

import numpy as np
import matplotlib.pyplot as plt

s

minfloc = np.searchsorted(freq,minfrq)+1 if minfrq != None
from scipy import signal
else O
maxfloc = np.searchsorted(freq,maxfrq)+1 if maxfrq !'= None

else len(omega)
class NoiseReduction():

def __init__(self,flname):

cnt = 0; avpwr = 0 -
for pos in range(0,len(longsig),slwid): self.filename = flname
piece = longsigl[pos:pos+slwid]; cnt+=1 self.slc = 20
power ,omg = self.get_power (self.bratlett_window(piece) self.spl = 210; self.pcnt = 1
Y self.read_file()

self.a = 2048

avpwr += power
P P self.trc = 10

avpwr /= cnt
def read_file(self):

maxpowloc = avpwr.argmax(); maxpowfreq= freq[maxpowloc] content = np.genfromtxt (self.filename)
print ('max power freq',maxpowfreq) self.j = content[:,0];

self.c = content[:,1]

self.N = len(self.c)

plt.subplot(self.spl+self.pcnt); self.pcnt += 1; plt.
tight_layout ()

plt.yscale('log'); plt.xscale('log')

plt.axvline(x=0.1061,color='r',1s="':")

plt.plot(freqminfloc:maxfloc],avpwr [minfloc:maxfloc])

plt.title(r'Smoothed power spectrum of $\theta(t)$ with
slice length = {}'.format(slwid))

plt.xlabel(r'Frequency(Hz)'); plt.ylabel('Power (arbitrary
units)');

def get_threshold_loc(self,sig,thr):
return self.trc

def get_power (self,sig):
sft = np.fft.fft(sig)
power = 1/len(sft)*(np.abs(sft))**2
return power

def sys_function(self):
hn = int(self.N/2)
j = np.arange (hn+1)
sysf = np.zeros(self.N)
. sysf[:hn+1] = np.exp(-j**2/self.a*xx2)
' sysf[-hn:] = sysf[hn:0:-1]
sysf /= np.sum(sysf)

if name == '__main

FP = ForcedPendulum('./files/pendulum2.dat')
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return sysf
noise = np.fft.ifft(fftnoise)

def truncate_noise(self,sig): #noise = np.fft.ifft(fftcorrupt_sig)
thr = le-4 plt.plot(noise)
scp = np.fft.fft(sig) #return noise

thl = self.get_threshold_loc(scp,thr)
scplthl:-thl] = 0

return scp def plot_org_sig(self,sig):
osig = self.get_back_signal(sig)
def divide_complex(self,Nr,Dr): plt.plot(osig)

N = len(Nr)
nsig = np.zeros(N,dtype=complex)

nsig = np.where(abs(Nr)>0,Nr/Dr,nsig) def plot_power_spectrum(self,sig):
return nsig power = self.get_power(sig); lng = len(power)
omega = 1/len(sig) *2*np.pi* np.arange(lng)
def get_back_signal(self,sig): plt.subplot(self.spl+self.pcnt); self.pcnt +=
csig = sig #plt.yscale('log'); plt.xscale('log');
truncated = self.truncate_noise(csig) plt.plot (omega,power)
ftgaussian = np.fft.fft(self.sys_function()) plt.subplot(self.spl+self.pcnt); self.pcnt +=
ftsig = self.divide_complex(truncated,ftgaussian) plt.yscale('log'); plt.xscale('log');
orgsig = np.fft.ifft(ftsig) plt.plot(power,lw=1)
return orgsig
if __name__ == '__main__":
NR = NoiseReduction('./files/corrupt.dat')
def get_back_noise(self,corrupt_sig): NR.spl = 210
osig = self.get_back_signal (corrupt_sig) #NR.plot_power_spectrum(NR.c)
fftosig = np.fft.fft(osig) NR.plot_org_sig(NR.c)
fftgaussian = np.fft.fft(self.sys_function()) #NR.get_back_noise(NR.c)
fftcorrupt_sig = np.fft.fft(corrupt_sig) #plt.plot (NR.c)
fftnoise = fftcorrupt_sig/fftgaussian - fftosig plt.show()
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Chapter 2

Galactic Astrophysics

2.1 Homework One

2.1.1. Assume that the Galaxy is 10Gyr old, the rate of star formation in the past was proportional to eT
where t is the time since the galaxy formed and 7' = 3Gyr, and the stellar lifetimes are given by

M\ B
t(M) =1 —
(o) = 106 (57
Calculate the framctions of all (a) 2Mg and (b) 5Mg stars ever formed that are still around today.
Solution:
Let to and t5 be the lifetimes of 2M, stars and 5M¢ stars. Then

oMo\ P 1
to = 10 times ( MS) = 11Gyr = 1.25Gyr

Mo\ 2
ts = 10 times <5M<;D> = 2—5Gyr = 0.8Gyr

If Nyy is the total 2M¢, stars ever formed, then
10 L
Npj = /ke-%dt = -2 [ —1] = —0.32
0

Any 2M, star formed earlier than ts from today are all gone so the remaining 2M, stars are formed
between 10 — ¢ = 10 — 1.25 = 8.75Gyr and today (10Gyr) from the beginning.

10
Ny, = / ke~ Tdt = —% [e*? —e % = —6.14 x 1073k
8.75

So the ratio of total 2M, star still formed to that are still around is

Nay  —6.14 x 103k .
= XD R 191x 10
Noj ~0.32k X

Since the star formation rate is independent of mass, the total 5Mg stars ever formed is equal to the
total 2M¢ stars. So, N5y = —0.321k. Any 5M¢ star formed earlier than ¢5 from today are all gone so

42
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the remaining 5Mg stars are formed between 10 — t3 = 10 — 0.08 = 9.92Gyr and today (10Gyr) from
the beginning.

10
¢ k .
NST‘ = / keifdt = 7? |:617?? — 67%} = 7321 X 107414:
9.92

So the ratio of total 5My star still formed to that are still around is

Ns. =321 x107%k 4
=22 XD P 999 % 10
N5, ~0.32k .

O

2.1.2. (a) A close (i.e. unresolved) binary consists of two stars each of apparent magnitude m. What is the
apparent magnitude of the binary?
(b) A star has apparent magnitude my = 10 and is determined spectroscopically to be an A0 main
sequence star. What is its distance? (See Sparke & Gallagher Table 1.4.)
Solution:
The flux(f) magnitude(m) relation is m = —2.5log(f). So the flux of each stars is given by.

f=10"25

The flux is additive so the total flux of binary is just twice of this fios =2 X f =2 x 10~ 25. Now the
apparant magnitude (m) of the binary is:

m = —2.510g(fro) = —2.5log (2 x 10775) = —2.5 (log(2)—%) =m—0.75
So the apparant magnitude of binary is m — 0.75.
Given that the apparant magnitude of the star is my = 10, As it is a Ay from the table the value
for absolute magnitude is found to be My = 0.80. We know that the relation between the absolute
magnitude(My ) and apparant magnitude(my ) and the distane of the star (r),

My —my, = 5(1 — log(r)) where 1 is in parsec
—9.2 = 5(1 — log(r))
log(r) = 2.84

r=10%% = 691.83pc
So the distane of the star is 691.83pc O

2.1.3. If the mass function for stars follows the Salpeter distribution, with

dN
M)—— = AM>3®
& )dM
(where dN is the number of stars with masses between M and M + dM; see Sparke & Gallagher, p.

66), for M; < M < M, with M1 Mu, and the stellar mass—luminosity relation is
L(M) o< M*,

show that the total number and total mass of stars depend mainly on Ml , while the total luminosity
depends mainly on Mu. Specifically, for Ml = 0.2M and Mu = 100Mg, calculate the masses M1
and M2 such that 50% of the total mass is contained in stars with M < M1, while 50% of the total
luminosity is contained in stars with M > M?2.

Solution:

The total mass of dN stars is MdN. So the total mass of the range is

M, M, My, A
Mot = / MdN = M- -AM™23%dN = A M™UBAN = ——— (M, %% — M%)
M, M, M, —-0.35
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Since we have to find M,, = M; such that half the total mass between 0.2M, and 100M, is to be equal
to the total mass in the range 0.2Mg and M;. Let’s suppose My = aMq. So,

% ﬁ {(100Mg) %% — (0.2Mg) %%} | = __(‘)435 {(aMg)™"?® = (0.2My) %%}
% [10070.35 _ 0.270.35} — [0470'35 _ 0'270.35]
[100-0-35 4 (.2-0:357 =03
‘= 2
o= 1-.06

So for the star in the range 0.2Mg to 1.06 M, have half the total number of the stars. The luminosity
of each star of mass M is proportional to M* and there are dIN such stars. So the total luminosity of
starts between mass M and M + dM is proportional to M*dN, So the total luminosity of the range
M; and M, is a constant times

M., M., . M, A
Liot = M*dN = M*- AM™*%dN = A / MYPAN = —— (M7 % — MP%)
M, M, M, 2.65

Since we have to find M; = M such that half the total luminosity between 0.2Mg and 100Mg is to be
equal to the total luminosity in the range M; and 100Mg. Let’s suppose M; = SMg. So,

17 A 4
92 |:265 (100M®)2'65 - (0-2M®)2'65}:| = 265 (1OOM®)2‘65 — (,BM®)2'65}]
. I
3 [1002'65 — 0.22'65} — [1002.65 _ 62.65]
(100265 4 .22:65] T
b=l ]
B =176.98

My = 76.98Ma So the stars in the range 77Mg to 100M have half the luminosity as that of total
stars in the range. 0

2.1.4. Astronomers often approximate the stellar mass function (M) by a Salpeter power-law with a low-mass
cutoff, but the Kroupa distribution

CM=93  forM < 0.1M¢
§(M)=qBM~'3  for0.1Mg < M < 0.5M
AM~23%  for M > 0.5M,

is actually a much better description [A is the same as in part (a) and the other constants B and C
are chosen to ensure that is continuous.] If the upper mass limit in all cases is Mu = 100M and we
assume the same simplified mass—luminosity relation as in part (a), what low-mass cutoff Ml must be
chosen in order that the truncated power-law has the same (i) total number of stars, (ii) total mass,
and (iii) total luminosity as the Kroupa distribution?

Solution:

Since the given function (M) should be contunuous, each piece should have equal value at the boundary.

B(0.5Mp) ™" = A(0.5Me) "% = B = 2.070M5 "% A
C(01Mg)~"% = B(0.1Mp) ™% = C = 10M5' B = 20.70M;>*° A
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The total number of stars given by Kroupa distribution is

100M¢ 0.1Mg 0.5M¢g 100Mq
N = /g(M)dM: /20.70AM52'°5M*0'3dM+ / 2.07TAMG M~ 3dM + / AM~%dM
0 0 0.1Mg 0.5M¢g

N =5.90AMZ"?° + 5.27TAMZ"% + 1.88AM "% = 13.05M ;"% 4

Also the total number of star given by salpeter distribution with lower mass limit as (aMg)

100 Mg
N = / AM~235dM
aMeg
= 0.74(aMg) "3 A — 0.0014M ;35 A

Equating these values

13.05M5" %A = 0.74(aMg) " A — 0.0014M 5" ** A
=a % =17.63
= a=0.11

Therefore the lower limit is 0.11M, if Salpeter distribution and Kroupa distribution have the same
number of stars.

Working in the units of My =1 and A=1:
The total Mass of stars given by Kroupa distribution is

100 0.1 0.5 100
M = /Mé(M)sz /20.70M0‘7dM+/2.07M—0-3dM+/M—1.35dM
0 0 01 o5
M =024+ 1.23+43.07 =4.54

Also the total Mass of star given by salpeter distribution with lower mass limit as («Mg)

100
M= /M x M™23%dM

«

= 2.85a7 %% — 0.57
Equating these values

4.54 = 2.850793% — 0.57
=a 9% =179
= a=0.19

Therefore the lower limit is 0.19Mg for the Salpeter distribution and Kroupa distribution to have the
same total mass.

The total Luminosity of stars given by Kroupa distribution is

100 0.1 0.5 100
L= / M*¢(M)dM = / 20.70AM3TdM + / 2.07M?7dM + / M55 anm
0 0 0.1 0.5

L =28.78 x 107° 4 0.042 + 75292.85 = 75292.89
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2.1.5.

Also the total Luminosity of all stars given by salpeter distribution with lower mass limit as (aMg)
100
L= /M4 x M~235dM

«

= 75292.92 — 0.37a2%
Equating these values

75292.89 = 75292.92 — 0.37a2%°
= 2% =0.07
= a=0.36

Therefore the lower limit is 0.36 M for Salpeter distribution and Kroupa distribution have the same
Luminosity.

O

(a) Use Gauss’s law to derive an expression for the gravitational force in the z direction due to an
infinite sheet of surface density ¥ lying in the x—y plane. (b) A star has velocity 30 km/s perpendicular
to the Galactic plane as it crosses the plane, and is observed to have a maximum departure above the
plane of 500 pc. Approximating the disk as an infinite gravitating sheet of matter, estimate its surface
density ¥ (i) in kgm? and (ii) in Mgpc—2

Solution:

The gravitational flux(®) thourgh a closed surface enclosing mass M, is

P = 471G Mo (2.1)

If we assume the galactic plane as an infinite sheet of mass uniformly distributed over a surface with
surface density 3 and we take the Gaussian surface as a cylynder of radius a perpendicular to the plane,
then the total mass included within the cylinder would be M., = Area x ¥ = 7a?Y. But the total
surface area of cylinder that is perpendicular(z direction) to the Plane is 2ra?. If E is the Gravitational
field at the cylinder surface, then total flux (®) through the area is E x 2ma? Substuting the values of
® and My in (2.1) we get.

21a*E = 4nG(1a*Y)
= FE =21GX

So the gravitatational force per unit mass in the z direction is 2rGX.

Given that a star with velocity v = 30km/s and travels a max distance of s = 500pc = 1.543 x 109m.
Sine the gravitational field is constant and is independent of distance above the galactic plane. We can
use the constant accleration kinematics relation vj% — v? = 2as. Since the speed at maximuh distance
is zero.

v2
a = %
But the accleration ¢ = 27GX
v (3 x 10%)?

D R
4r(Gs 2 x 1.543 x 1019 x 47 x 6.672 x 10—11

Since 1kg = 5.02 x 1073 My, and 1m ™2 = 9.52 x 1032pc—2

= 0.069kgm 2

¥ = 0.069 x 5.02 x 10731 x 9.52 x 10> Mgpc=2 = 33.30Mgpc 2

So the surface mass density ¥ for the given planar galaxy is 0.069kgm? = 33.30Mgpc—2. O
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2.2 Homework Two

2.2.1. A certain telescope has limiting visual apparent magnitude my = 22. What is the maximum distance
at which it could detect (a) the Sun (absolute magnitude My = 4.8), (b) an RR Lyrae variable (My
= 0.75), a Cepheid variable (My = —3.5), and (d) a type Ia supernova (My = —20).
Solution:
If my is the limiting aparrant magnitude of the telescope, anything with apparant magnitude greater
than my would not be resolved by the telescope. So the maximum distance that the telescope can still
resolve is the distance in which the apparant magnitude of each of the stars is equal to the limiting
apparant magnitude.

If we suppose d;,q. is the maximum distance. Then

dmaa)
Mv—mv:—5log( 10 )

Moy — My

Rightarrowd g, = 10 x 107 5
Since the limiting magnitude (m,) = 22

22— M, |
dmaz = 10 X 107 5 in Parsec

e For Sun My = 4.8, limiting distance d,,q; = 10 X 10557 = 27.54kpc

22—-0.75

e For RR Lyre My = 0.75, limiting distance dy,q, = 10 x 10~ 5 = 177.82kpc

2243.5

e For Cepheid variable My = —3.5, limiting distance d,q, = 10 x 1075 = 1.25Mpc

22420

e For Ia Supernova My = —20, limiting distance d;,q, = 10 x 1075 = 2.511Gpc

2.2.2. A simple axisymmetric model of the stellar number density n(R, z) in the Galactic disk is
n(R,z) = noe_R/hR 6_‘2‘/’”27

where R is distance from the Galactic center, z is distance from the disk plane, and hr and h, are
(constant) scale heights. (a) If all stars have the same luminosity L., integrate the above expression
with respect to z to determine the disk surface brightness ¥(R) (that is, the total luminosity per unit
area at any given location). (b) Now integrate ¥ with respect to R to determine the total luminosity
L of the Galaxy. (¢) If Lg = 2 x 101°Lg, and hr = 4 kpc, what is the local surface brightness in the
vicinity of the Sun, at R = 8 kpc? (d) If h, = 250 pc and L, = L), calculate the local density of stars
in the solar neighborhood (at z = 0).

Solution:

Given all stars have same luminosity L, the luminosity per unit area is:

o0 oo

[Ed

=(R) = / L*n067%67E dz = Q/L*noef’%efﬁ dz

o 0
_R [ _z71%® _ R
= —L,h,nge ™r [e hz} = 2ngh,e "R L,
0

Now for the total Luminosity the function ¥(R) is integrated from R = 0 to oo.

Lg = /E(R)dR: /2n0hze‘%L*dR
0 0

(e ]
— 2noh. L. (—hr {e hR}O ) — 2nohph, L.

R
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2.2.3.

The above expression for Lg gives the total luminosity of galaxy in terms of the luminosity of each
stars L.

For vicinity of sun at R = 8kpc and Lg = 2 x 10'°L¢, and hr = 4kpc

L 2.5 x 10°
€  p, =200

Lo = 2nohghoL. = h, = ——¢
G = “noltr 2L hrno noL.

Lo

So the local surface brightness X (R) at the vicinity of sun then is

2.5 x 109

e 9L, = 6.76 x 10° Lg,
?’loL*

S(R) = 2nohse "R L, = 2ng -
The local density of stars around z = 0 is

n(8kpc,0) = noe%eo =0.13ng

O

(a) Given the definitions of the Oort constants A and B presented in class (Egs. 2.13 and 2.16 in the

text),
1 VAW
A=gh (R)

verify that A+ B = V/(Ry) and AB = V;/Ry, where V (R) is the Galactic rotation law, Ry is the
distance from the Sun to the Galactic center, and Vy = V(R0).

(b) Hence write down an estimate of Vy, if Ry = 8kpc.

(¢) Consider the spherically symmetric density distribution given by

1 (RVY)
g L (&V)
R=R, 2 B lpep,

p(R) = po <1 + f;) h

Derive an expression for the mass inside radius R. What is the circular orbital speed V (R) at radius
R? Hence determine the form of A(R) and B(R) for R > a.

Solution:
/
a=-1gp(¥ s _LRVY
2 R 5 R
1 (V' Vv 11 .
=—R( %5 — 5 =———(V+RV
2R<R R2> oz VAV
1v 1
i ]' ! 1V :_77_7‘//
=3V Tag 2R 2
Evaluating at R = Ry Evaluating at R = Ry
1V(Ry) 1
1 1V(Ro) po V@B 1,5
A==V i X
RV (Fo) + 3 Ro 2 Ry 2

Now that we have the values for each constants A and B.

A+ B=—-V'(Ry) A-B=
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Let us conider a hollow shell of radius R with thickness dR. Then the volume of the differential

shell is
dV = 47 R%*dR
The differential relation for mass can be written as.
dM = p(R)dV

R\
= po (1 + a2) 4rR*dR

The total mass enclosed in the sphere of radius R is given by the integral of dM from 0 to R
R R 1
R2
M(R) = /dM _ /po (1 + aQ> 4rR2dR
0 0

R2
0

a2

= drpoa® (R —atan™ (1))

M(R) = 4rpoa® (R — atan™ (1)) (2.2)
To calculate the V(R) we can use the relation.

VX(R)  GM(R)

R R?
2 G4rpoa® (R — atan™ (5§
v ](%R) _ T2pod ( Rza an! (%)) Substuting M(R) from (2.2)

V(R) = 2a\/G7rp0 (1 - %tan‘l (f))

if R > a then tan™! (%) ~ T also & — 0 Then.

V(R) = 2a\/G7pg

Since V' has no dependence on R, V' =0

1., 1V 12a+/Gmpy  a\/Gmpo
A(R) 2V+2R—0+2 7 =—x
o 1vo1_,  12ay/Gmpg _ayGmpo
BB == 3V =37 *t'=——Fx

O

2.2.4. If our Galaxy has a flat rotation curve with V5 = 210 km/s and the total luminosity of the disk is as
in Problem 2, what is the Galactic mass to light ratio M/L inside (a) the solar circle (Ry = 8 kpc), (b)
10Ry? Compare these with the mass to light ratio of a Salpeter stellar mass distribution (see Homework
1, Problem 3) with M; = 0.2Mg, M,, = 100M.

Solution:
Total luminosity inside of radius R can be calculated as

R R

/E(R)dR: /2n0hze‘%L*

0 0

L(R)

= Qthzno (1 — e_%L*)
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Substuting h, = 4kpc, h, = 250pc, L, = L in above expression
L(R) =2 x 10° (1 - e%) noLe

If the rotation curve is flat, the mass can be calculated as

M(R) = RV?

= 48.83R Mg, /pc

For R = 8kpc
L(R) =2.0 x10° (1 —e %) noLe = 1.72 x 10°n L,

_ RV?

M(R) = 48.83 x 8000M¢, = 3.90 x 10° M,

The ratio then is:
1.72 x 10%no L

M/L =
L=350% 105 M,

= 0.22n0M®/L®
For R = 10Ry = 80kpc

L(R) =2.0 x 10° (1 — e *) n,Le = 1.99n0Le

RV? .
M(R) = = 48.83 x 80000M, = 3.90 x 10° M,
The ratio then is: 1.99L
M/L= "0 —51x10 "ne™o
b= 350 % 1000, X107 0™,

For salpeter distribution £&(M) = AM~2-3% The total mass is

100M ¢ 100Mg

M = / ME(M)dM = / AM ™ 35dM = 1.49 x 10°4
2Mg 2Mg
100M¢ 100M¢
L= / MA¢(M)dM = / AM*%5dM =2.13 x 10* A
The ratio is 6.4
1.49 x 10
M/L = " =69.
/ 213 x 1004~ 099

2.3 Homework Three

50

2.3.1. Neutral hydrogen atoms in the cool interstellar medium have number density ng ~ lem™2 and tem-

perature 7100 K.
3

(a) Show that the average speed ¥ of these atoms, defined by 2mpyv* = 3kT( where my is the mass

of hydrogen atom and k is Boltzmann’s constant), is
1
T /2
o~ 2kms™! () .

Solution:
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2

Given that the average speed ¥ of these atoms, defined by %m HU® = %kT It can be rearranged

into

[T \/3 <% 100\/ T \/3>< L3S X107 x100 (7 \Y*_ 1\
" NVomyg my 100K 1.67 x 10—27 100K o 100K

O

(b) Hence show that the typical atomic center-of-mass kinetic energy is much greater than the energy
difference between the hyperfine states associated with the 21-cm radio line.

The mean time between collisions for atoms in this environment is a few thousand years, while the
mean time for an excited atom to emit a 21em photon is =~ 1.1 x 107. As a result, the populations
of the lower and upper hyperfine states are determined entirely by collisional processes and the
states are populated proportional to their statistical weights, so three-quarters of all hydrogen
atoms are in the upper state.

Solution:
The energy associated with 21cm line is
_he

E = S 9.485 x 1072°J = 5.92 x 10~ %eV

The typical energy is 13.6eV which is much greater than the energy associated with 21cm line [J

(c) Calculate the total 21-cm luminosity of a galaxy containing a total of 5 x 10°Mg of neutral
hydrogen.
Solution:
The total number of neutral hydrogen is N = % =1.13 x 10°7.

The rate of emission of photon is f = (1.1 x 107) 7! /yr = 2.28 x 10715571
So the total luminosity due to 21cm photon is given by

L=N-f-E=311x10"%W

So the total luminosity fo the given galaxy is 3.11 x 10'8 O
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2.3.2. What are the sound speed and Jeans mass. (In all cases, assume an adiabatic index v = %)
(a) in a molecular cloud core (pure H») of temperature 10 K and number density 1x10® molecules/cm3?

Solution:
Mass of hydrogen molecule Hy is my, = 3.34 x 10727, T = 10K

KT
Oy =/ L = 262.41m/s;  p=mu,n = 3.34 x 10~ Pkgm=3
m

2 4
A= T =8.048 x 109m; M = %mﬁ = 7.29 x 10%kg
P
(|
(b) in atomic hydrogen gas with temperature 100 K and number density 1 atom/cm?
Solution:
Mass of hydrogen atom is my = 1.67 x 10727, T' = 100K
kT
Cy = /255 = 117.56m/s;  p=mpn = 1.67 x 10~ kgm =3
m
7TC§ 13 471— 2 20
Aj = P =5.09 x10"m; M; = ?p)\j =9.22 x 10" kg
O

(c) in hot ionized hydrogen with temperature 1 x 10° K and number density 1 x 10~2 protons/cm3?
Solution:

Mass of ionized hydrogen molecule is m,, = 1.67 x 10727, T' = 100K

kT
Cy= /B2 =117 x 10°m/s;  p=mpn = 1.67 x 10~ 2 kgm 3
m

2 4
A= )55 =167 x 10Tm; M = ?ﬂp)\? =2.91 x 10%%kg
p
|
2.3.3. Air at sea level on Earth has density = 1.2 kg/m3 and sound speed vs = 330 m/s.
(a) What is its Jeans length? What is the Jeans mass?
Solution:
w2 5 dr s
Aj = 5 =5.339 x 10°m; M; = ?ij =7.65 x 10°kg
The Jeans length is 533.9m and the Jeans mass is 7.65 x 108kg O
(b) By how much does the self-gravity of air change the frequency of a sound wave of wavelength 1
m?
Solution:

The frequency of 1m wavelength wave on earth is f = vs/A = 330H2 The change in frequency
due to gravitation is related by

pop= (23)
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2.3.4.

()

If we supppose changed frequency f, = f + Af and Af is very small then

2
P=R=r-+a?=r-r <1+Aff) %f2f2(1+2Aff)2Af~f

Substuting this difference into (2.3) we get

_ Gp  6.672x1071-1.2

= - =386 x 1071H
o f 27 - 330 % ‘

Af

O

A particle is dropped (from radius a with zero velocity) into the gravitational potential corre-
sponding to a static homogeneous sphere of radius a and density . Calculate how long the particle
takes to reach the center of the sphere.

Solution:

Let the density of the mass density of the homogenous sphere be p. Also le the mass of the sphere
within the shell of radius r be M (r).

M(r) = pV(r) = pmr®

Writing the equation of motion from Newton’s laws.

GM Gpszmr® 4 4
7= — () = AT ——Grpr = —w?r where w? = ~Gmp (2.4)
r2 72 3 3

The second order differential equation (2.4) is the well known SHM equation which has periodic
solution of the form.

r(t) = Acos(wt) + Bsin(wt) (2.5)
Differentiating (2.5) we get
7(t) = —Aw sin(wt) + Bw cos(wt)

where A and B are the parameters determined by the boundary value. Since the particle starts
from the surface of the sphere (0) = a and the initial speed 7-(0) = 0. Using these boundary values
we find the values of A and B. The thus determined are A = a¢ and B = 0. So (2.5) becomes

r(t) = acos (wt) Where w = /¥,Gmp (2.6)

If T is the time the particle takes to reach the center of the spherical distribution then r(7°) = 0
so the solution of (2.6) gives

m T 3T
T=—-=T=—=
R 2~ \ 16Gp
The time T is the time the particle takes to reach the center of spherical distribution. (]

Calculate the time required for a homogeneous sphere of radius a and density with no internal
pressure support to collapse under its own gravity.

Solution:

If the spherical distribution collapses by its own gravity, then as the particle on the surface is
pulled inward towards the center, the mass compresses and so the mass inside the spherical shell
at any time is constant
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Writing the equation of motion from Newton’s laws.

S GM(r) Gpgma® w?

4
L _ _ 2 _ 3
F= 5= o ( where w” = gGﬂpa ) (2.7)

We can transform #

s dr _drdi_ dr (2.8)

2 1 2
r'dfz(—w)dr = 2= 4K
2 r
The boundary conditQion is that at r = a the starting speed of particle is 7 = 0 Substuting this
back we find K =~/ . We get

Nl

1 1 1 1\~
= V2w~ — = = < - > dr = 2wdt (2.9)
T a r a
The solution of (2.9) is'
a? sin! <\/?) - % —Vawt+cC (2.10)
a 11
lim ——% —0;  limsin’ (\/?> =T o5 =Ty (2.11)
r—a \/; r—a a 2 2

Using (2.11) in (2.10) we get

ad (sin"l < r) - ”) N (2.12)
a 2 1

If T is the time the particle takes to reach the center r(T) = 0 so the solution of (2.10) gives

T 3 T a3m? 3
Wl = —a? =>T=——-20a?= =/
Vo 2¢ 2\/§wa 8- 4,Gpmrad 32Gp

The time T is the time the particle takes to reach the center of spherical distribution which is the
time of the collapse of the mass distribution under its own gravitational pull. |

2.4 Homework Four

2.4.1. Estimate the masses of star clusters having

(a) root mean square velocity 10 km/s and half-mass radius 10 pc,

Solution:
Given vy,s = 10km/s, the mean square speed is (v?) = (10km/s)? = 1 x 10* The total mass is
given by
6R, (v?)  6-1x10*-10 x 3.08 x 10 16 6
M = = =2. 10°°kg = 1. 10° M,
a 6.67 x 10-1T 78 x 107kg 39 x 10° Mg
So the mass of the cluster is 1.39 x 10°M, |

Isolved by Sympy 1.1.1 under python 3.5
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2.4.2.

2.4.3.

(b) mean density 100pc—3

Solution:
If the number density is n and average stellar mass is m then the mean mass density

, rms velocity 2km/s, and mean stellar mass 0.8 Mg,

p=mn-m=100pc> 0.8Mg = 80Mg/pc’; vyms = 2km/s = (v?) = 4 x 10*

1/3
. The density volume relation p = 43%3 =R = (3M ) .

4mp
3
6R (v2)  6(v2) /30> 6(v2) /3 \7)"
M = = — =M= — = 4.53 x 10%*kg = 2.27 x 10* M,
G G (47r,0) G (477,;) AR e
O
(c) dynamical time 1 x 10%yr and radius 1 pc.
Solution: )
The dynamical time 7 = (é—’;) ° Using p = % we get
Am?R3
=T 175 x 10%%kg = 8.79 x 10* My,
G2
0

Interstellar gas in many galaxies is in virial equilibrium with the stars, in that the rms speed of the
gas particles is the same as the rms stellar speed. Consider a large elliptical galaxy with a virial radius
of 100 kpc and a mass of 1 x 1012M, solar masses. Calculate the rms stellar velocity using the virial
theorem. Hence estimate the temperature of the interstellar gas, assuming that it is composed entirely
of hydrogen.

Solution:

= /2 = GM %_ 6.67 x 10711 .1 x 102 . 1.9 x 1030
frms =V =GR ) T 6-1x 10%-3.08 x 1016

The mass of hydrogen is my = 1.67 x 10727kg. If all the interstellar mass was composed of hydrogen
then the temperature would be given by reation

1
2
) = 2.68 x 10°m/s = 268km /s

2 —23, 312
%mH (v?) = ngiT: mp (v?) _ 1.67 x 10 (268 x 10%)

_ 6
3% 3-1.68 x 102 = 286X 107K

|

Assuming an average stellar mass of 0.5Mg and A = r./1AU, lookup table values and find the relaxation
time ¢, at the center of globular cluster 47 Tucanae. Show that the crossing time toross =~ 27c/0, ~
1x 10_3trelaz

Solution:

The total number of stars in the cluster is given by

Total M M,
_ otal Mass _ 800M ¢ — 1600
Mean Mass  0.5Mg

The density of stars from table is p = 10*°Mg /pc®. The dynamical time of the stars can be now

calculated as .
GM\ 2

T = (3) =3.09 x 10°yr

r

c
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Now the relaxation time

N 1600

t = = 3.09 x 10° = 4.89 x 10°
relar = S EI(A) | 8.5In(ro/1AU) AT

The cross time is ; 5 5.07
Ccross Te - U. pC -9
tretar  Orlrelaw 1.1 x 10%-4.89 x 106

O

2.4.4. The velocities of stars in a stellar system are described by a three-dimensional Maxwellian distribution—
that is,

f( ) AU2 —mv? /2kT
Here, A is a normalization constant, m is the stellar mass, assumed constant, & is Boltzmann’s constant,
and T is the temperature of the system. Verify the mean stellar kinetic energy is %m<v2> = %kT

Solution:
The normalization condition gives

/f(v)dv = /Av267m”2/2dev =1
0

0

To carry out the integration lets make some change of variables

mu? 2kT kT
_— = N = —X: = — A‘
ok = 5=V i dv = dx sv— {0,00} x— {0,00}

Using these variable transformation, our normalization integral becomes.

O I O I
0

But by definition of gamma function I'(n) = [ 2" 'e™* we get. And I’ (%) =
0

m m ?
0 var (&)

The expectation value for the square of speed can be calculated as:

<U2> = /UQf(v)dv = A/U4e—mv2/2deU
0 0
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Carrying out same transformations as above we get.

[oa (KT\? 5 |
(v?) = A/Q% () z2e " dx
m
0

5 0O 5 5
2 s B 2
0
5
. 2
I S <I€T> %\/7F
() A
3kT

m

1
= §m<v2> = ;kT

Nl

3
So the kinetic energy of each mass is ikT if the velocity destribution of the ensemble of mass follow

Maxwellian distribution function. O
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2.4.5. Work out the details of the simple evaporative model discussed in class. Stars evaporate from a cluster
of mass M on a time scale t., = atr, where a > 1,80

M M

—_— = 2.13
dt thR ( )

For pure evaporation, each escaping star carries off exactly zero energy (i.e. stars barely escape the
cluster potential), so the total energy of the cluster remains constant.

(a)

If the cluster potential energy can always be written as U = —k% for fixed k, where R is a
characterstic cluster radius, and assuming that the cluster is always in virial equilibrium, show
that R oc M? as the cluster evolves.

Solution:
The potential energy relation can be reorganized as
kG kG
R:—ﬁM% = R=fBoM? = Rx M? Where Boz—ﬁ
So R o< M?2. |

Assuming that the relaxation time tg scales as M'/2R3/% so

MAYZ R
tr = tRro (Mo> (Ro) (2.14)

Solve (2.13) to determine the lifetime of the cluster (in terms of its initial relaxation time tgp).
Also write down an expression for the mean cluster density as a function of time.
Solution:
We can write Eq. (2.14) as tg = BiMY?R3/2. Since R = fyM?. We now have, tp =
ﬁ1M1/2(60M2)3/2§

= tp = B M7/

Suppose T is the lifetime of the cluster that had initial mass of M; then as time goes from 0 to T’
mass goes from M; to 0. Using tg in Eq. (2.13) we get

T

0

aM 1 M

2 MM = — /dt- -

dt Oéﬁ3M7/27:>/ 64 ;=
M; 0

2
SM? = —pu(T) = T o M]

So the lifetime of the cluster is T" o MZ/Q B
Now the density p %. But for a system in dynamical equilibrium we have R oc M?2. This gives

p X % = M® = M  p~5 Eq. (2.13) can be solved as a function of time as above and written
as

M= ﬁ5t2/7 - M5 = Bst—10/7 - p= BGt—10/7
O

Estimate this for a globular cluster of mass 5 x 10° M, radius 10pc and mean stellar mass 0.5M
Solution:
The density of this cluster is

M 5 x10°Mg

BT loape = 986 10~ kg /m® = 5 x 102M, /pc?

p%
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. The number of star is

o Mtot N 5 X 105M®

- =1x10°
Taw | 0.5Mg %

N

The time scale then is

=6.67 x 10°yr

L (GMN TP 667 x 1071 -5 x 10° Mo
R N 103pc3

2.5 Homework Five

2.5.1. (a) Calculate the total gravitational potential energies of (i) a homogeneous sphere of mass M and
radius a, and (ii) a Plummer sphere of mass M and scale length a
Solution:
The potential energy is U = W Where M (r) is the mass inside of spherical shell of radius 7.
For a homogenous spherical distribution of p the M (r) = %777‘3 p and the additional mass increase
due to increase in the radius of mass is dm = pdnr2dr.If we bring dm from infinity to  then the

increase in potential energy is

_ GM(r)

GM(r) G3mrip

du dm = — panridr = - pAmridr (2.15)

The total potential energy is obtained by integrating Eq. (2.15) from 0 to the radius of the final
sphere a.

5 1672Ga®
=——7

a
— 2.1
5 15 (2.16)

“1 1
U :/ —67r2p2Gr4dr = —67r2Gp2
0o 3 3

But for a homogenous sphere of radius a the density is p = 2. Using this is Eq. (2.16) we get

4mas*

16 , a® (3M \?> 3GM?>
U_Eﬂ- G? <47Ta3> - ba

2
3GM .

So the gravitational potential energy of homogenous shpere of mass M and radius a is =%

Given any potential function we can always calculate the density function using the poisson equa-
tion.

GM .
® = —— Plummer Potential (2.17) V2® = 47Gp(r) Poisson’s equation

V12 +a?

For spherical system the Laplacian operator is V? := L2 (r2.2) Calculating % we have.

d¢ 0 GM ___ GMr ':>r28—¢—— GMr?
or  or\Vr2+az) (r2 + a2)*/*’ or (r2 + a2)*/?

_ 3G Ma?

9. 10 GMr3 10
vee B o (r2 +a2)5/2

a2\ "2
N — Y lem(1+ L
r20r \ (r24a2)%? r2 or ( * r2)

Poisson’s equation can be used to calculate the density function as p(r) = 1—%.

1 3GMa? 3Ma? 1
= : = 2.1
p(r) 4G (7»2 + a2)5/2 47 (7’2 + a2)5/2 ( 9)

(2.18)
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2.5.2.

Eq.(2.19) gives the density function of the plummer model. This density function can be used to
calculate the mass of spherical volume of radius r as:

T

[3Ma? 2 M
M(r) = /p(r)47rr2dr = 47r/ a ! dr = ! (2.20)
dm (p2 4 a2)5/2 (r2 + a2)3/2

0 0

We can use Eq.(2.15) to calculate the potential energy equipped with the mass function and density
function.
i 3 2 7 4 2
Mr 5 3Ma 1 dT:3GM2a2/ r _ 3nGM

U =4rG -re =
T (7’2+a2)3/2 " 47 (r2+a2)5/2 (r2+a2)4 32 a

. . . . . 37 GM?
So the total gravitational energy of plummer potential function is 35 = . |
Show that the total mass of the Plummer model is indeed M.
Solution:
Eq.(2.20) gives the mass cantained within the radius r for plummer sphere. The total mass of
plummer sphere is the total mass contained inside the radius of r = co. Taking limit of Eq.(2.20)
we get.
M3 M
M;or = lim 77"3/2: lim ——— =M
7—00 (7,2 +a2) 7—00 (1 + %)5

This shows that the total mass of plummer model is M which appears in the potential function
given by Eq. (2.17). a

Verify that the Kuzmin potential
GM
2+ (a+|z[)?

S(r,z) =— (2.21)
has V2® = 0 for z # 0, and so represents a surface density distribution X(r) in the plane z = 0.
Solution:

Writing 72 = 22 +y? where x and y are the cartesian coordinates corresponding to the r coordinate
in cylindrical system. We get ® = —GM (2% +y? + (a + |2|)?)~/2. In cartesian coordinate system
V2= aa'—; + 38722 + g—;. So each components of ths operator are.

02 GM (29:2 —y?—(a+2) ) 92 GM (7172 +2y? — (a+ z)2>

da?

(22 4+ 92+ (a+2)°) (2412 + (a+2)°)

Since the potential is function of |z| and the derivative of |z| dosent’t exist at z = 0. We take left
hand and right hand derivative for the z component. Using |z| = +z for right and |z| = —z for
left derivative, We get.

92 GM( 22—y +2(a+ )) 92 GM<_x2_y2+2(a—z)2)
- 922" 2
<x2+y2—|—(a—z)>

9”2 92 o2
<a2+a +82><I> 0

[SIE]
(SIS

672
“+ (a:2+y (a+2) )

In each of the cases the total sum
9?2 0? 0?2
2
D =
vie (a2+a a?)

By use of Poisson’s equation p(r) = 1/4rGV?2® we conclude the mass density is zero everywhere
except (possibly?) at z = 0. |
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(b) Use Gauss’s law to determine (7).
Solution:
The gauss law for gravitational field says 555 E -dA = 47G M.y, where S is any arbitrary closed
surface and M., is the mass inside that surface. Now that we know that there is no mass except
at infinite plane z = 0, we are certain that the Gravitational force field is completely along 2. The
force field along 2 is given by E = 8‘1> Since the potential function is not smooth, we have two
different values for this derivative on elther side of the disc.

_o0 _ 0 (__6GM \ _,___GM(@+z .

09 | 0 GM . GM (a — z)
E.———s-_° 5= 7
Oz 0z \ /r2+(a—z)? <r2 + (a— 2)2) ’

If we take a cylindrical gaussian surface for S with surface Area AZ, The total mass inside the
cylinder is Mene = ¥ X A and the flux though the surface fE dA =FE A+ E_ A But E, is

uniform so we can calculate B, = 8‘9% ’z:O = (rﬁaw And similarly for E_ = W So,
M Ma M
nGEx A=Y A+ e  sAmT=——
(r?2 +a?) (r?2 +a?) 27 (r2 + a?)
So the surface mass density of the Kuzmin disk is %(r) = —2Me O

27 (r24-a2)3/2

(¢) What is the circular orbit speed for a particle moving in the plane of the disk?
Solution:
For this potential the total mass inside the spherical shell of radius r is simply the surface density
times the area of great circle, so M (r) = X(r)mr2. The transverse speed for a circular orbit

Y \/GM(T) _ [Gnr? Ma B GMar
‘ r T 2r(r2+ a2)3/2 2(r2 + a2)3/2

This gives the speed of particle in circular orbit for Kuzmin potential. O

2.5.3. For stars moving vertically in Galactic disk, with energy E, = ®(Ry, z) + Y,v2, suppose the distribution
function is

Find the density n(z) and give it’s value n(0). To construct self consistent model let ®(z) = o2¢, show

that 24 )
CP _ 0 h -z d 2=_9
0 e %, Where y P an % =g G
Solve this for ¢(y) and hence find ®(z) and n(z). What is the value at large |z|?
Solution:

The number density is the zeroth moment of this distribution function so

g

00 — /0 0o
9 / (o Yp?) fo? _ 2m0e” T / S = et/
0

ol

:/ Flav)do: = 2 N

®(2=0)/02 0

This gives the expression for n(z). Since ®(z = 0) = 0 is given. n(0) = nge™ = npe’ = nyg.
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The total mass density 47Gp(z) = V2®. But p(z) = mn(z) where m is the average mass. But for
— d%®

= 5. Also operator dz? = 22dy?;. By poissons equation,

motion only along z, we can write V2®

L) d?¢ o?
—_— = 4 . 2
7 7Gmn(z); o

d%¢
= 4nG 0 =2 =W f = —
zady? rmnoc dy? © %0 8rGmnyg

Now solving this for ¢ as a function of y

2
¢ e~ ?W)

2 =
dy?

This differential equation should give a function ¢(y) such that n(z) = noe=*G0¥)/7* = ngsech®(z/(22))
but I couldn’t find any reasonable solution

For large value of |z|

lim ngsech? = = 0; lim ngsech? _Z =0
Z4—>00 220 Z_—00 220

So for large value of |z| the density is zero. O

2.5.4. A stellar system in which all particles are on radial orbits is described by the distribution function

AS(L)(E - &)~V? ifE>&

0 otherwise

f(&L)={

where £ = 1) — 1/20%is relative energy and & and A are constants.

(a) By writing v? = v2 + v? , where v, and v; are the radial and transverse velocities, and L = rv; ,
prove that the volume element d®v = 27v.dvidv, may be written d>v = % where X = L2 .
(b) Hence show that the density is

I Br? i (r <o)
plr) = {0 it (r > ro)

where B is a constant and the relative potential at r satisfies ¥(rg) = &o.
Solution:
The number density is the zeroth moment of distribution function with respect to velocity. So

n(z) :/fd311: 7 /OoAa(L)(g_go)l/stv: 7 /OOAd(\/)?)(g_go)l/deSdX

720,

— 00 —O0 — 00 —O0

_7A 75(%)?)@( (5—50)*1/2%

T
— 00

If ro < r then & =(r) > &

© mAE — &) 2

plr) =mn(r) = [ 2SS de
_ _ —-3/27%°

_ % [ 2m(€ — &) _ g2
T 3v, P
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But if 7o < r then & = ¢(r) < & and f(€,L) = 0 then,

p(r) = /Od3v =0

This is a power law density with density decaying as square of the distance for a finite spherical
region in space. O

2.6 Homework Six

2.6.1.

2.6.2.

Assuming the rotation curve for milky way is flat andV(R) = RQ(R) = 200km/s and Ry = 8kpc.
(a) Compute the Oort constants A and B, and the local epicyclic frequency . (b) If the Sun has v,
(radial) = 10km/s and v, (transverse) = 5km/s, calculate the Sun’s guiding radius R g and radial
orbital amplitude X.

Solution:
For flat rotation curve v(r) = constant. so, % =0. .
1V(R) 1200km/s
A== = - = 12.50k k
2 Ry, 2 Skpe m/s/kpe
1V(R) 1200km/s
B=_—_= = —— "' = -12.50k k
2 Ry 2 8kpc m/s/kpe
The value of & is related to the oort constant as k2 = —4BS)

Q=V(R)/R=200/8 = 2.5km/s/kpc; Kk =V4%12.50 % 2.5 = 11.18km/s/kpc
Also

5km/s

—2BX;= X =
Yy A T 5 12.50km s kpe

= 0.2kpc

The guiding center is the sum of maximum displacement X and the closest approach so By = Rg+X =
8kpc + 0.2kpc = 8.20kpc. O

Show that, if the rotation curve of the Milky Way is flat near the Sun, then x = v/2Q(R), so that
locally x a2 36km/s/kpc . Sketch the curves ofQ), Q4+ x/2,and2 + k/4 in a disk where V(R) is constant
everywhere, and show that the zone where two-armed spiral waves can persist is almost four times
larger than that for four-armed spirals.
Solution:

For a flat rotation curve V(R) =constant, so,
But k2 = —4BS). This gives

dV(R)
dR

This gives the epicyclic frequency of the sun. The graph for Q@ & § and Q & 4 are The lowest and
highest values of R can be found at the points where 2 crosses the pattern speed €2,. The point Q &
crosses €, are Ry = (1 £ %)R This gives the ration of region as

= 0. The oort constant B is B = —%@ = —

Nfe]

S

Rmaz L+
= =528
Rmin 1-—

S

1

Similarly The point 4 % crosses , are R4 = (1 £ 573

)R This gives the ration of region as

S
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2.6.3.

Fows 14335
maxr i — 2.09

The region are approximately at the ratio of 3.0 |

(a)

Given the dispersion relation for a gas disk, (w — mQ)? = k?v? — 2rGL|k| + k2, Show that the
group velocity is

klv2 — mGX
Vg = 251gn(k)‘|v577rG.

w —mf

Solution:
Differentiating both sides of the given dispersion relation with respect to k, gives

2(w — mQ)g—: = 2kv? — 2nrGYsign(k)

For any real number k we can write k = |k|sign(k) using this in above expression can be rearranged
in the form

Ow 2|k|sign(k)v? — 2rGY sign(k) sign (k) |k|v2 — 27 G%
ok 2(w —mQ) -8 w —mf)
This gives the required group velocity as required. |
Show that, for a mirginally stable disk with @ = Ug; = 1 the group velocity is equal to the
7r

sound speed v,
Solution:
For @ = 1 we have 71GY = vzk. Using this in the expression of group velocity gives

) |k|v? — vgk
= k) s
vg = sign(k) P
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We can use k = m$ and k = . If we disregard the sign of k (ie, assume & as positive) the above
expression becomes *

. U%Us —mf2 w —m$
vy = sign(k) g vS:w_vas:vs
This shows that the group velocity is (within a signof k) equal to the sound speed. (|

2.6.4. A satellite galaxy of mass M, moves in a circular orbit of radius R in a spherically symmetric galactic
halo of density p(r) = v2/4rGr? | with My, < v2R/G. The stars (and dark matter particles) in the
parent galaxy all have masses much less than M .

(a) Use the equation for dynamical friction to write down the drag force on the satellite as it orbits.
Solution:
The dynamical friction is given by,

dv  4AnG(M, +m) _
_E = v—2nm ln(A),

For a satellite galaxy of mass M, obiting at v. the passing velocity is V' = v, the drag force is
— M, %= Noting that for the galactic halo nm = p(r) leads to.

s7qdt
4rG? e M2@
Farg = g, T Vg MEG
v2 ArGr? 72
This gives the expression for the drag force on the orbiting galaxy in the halo. O

(b) The satellite sinks inward so slowly that it can be thought of as moving through a series of circular
orbits, so its orbital speed at any radius r is always equal to the circular orbital speed at . What
is the angular momentum L(r) of the satellite at radius r?
Solution:
The instantaneous speed at a distance r from the center is v., so the momentum is P = M;v,.
The angular momentum is L =r x p

L=rxP=rMu, (2.22)
So the angular momentum of the galaxy at distance r is Mgv.r |

(c) By equating the rate of change of L to the torque exerted on the satellite by dynamical friction,
show that the distance r(t) from the satellite to the center of the galaxy obeys the differential
equation

dr GM;1In(A)

dt Vel

Solution:
The torque about the center of the galactic halo which the galaxy is orbiting is 7 = Fy,47, but

T = %, combining these two give
dL dr M2G dr GM;In(A)
7:FT ;:>M507:_ S 1 A’éi:—i
dt drg” v dt r2 n(A)-r dt Vel

Which the required differential equation for the rate of change of distance of orbiting galaxy to
center of halo. O
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(d) Solve this equation to estimate the time taken for the satellite to sink to the center of the parent
galaxy.
Solution:
The time to fall ¢ into the center of halo is given by the time for the distance of Ry to 0 at the
center of halo. Rearranging the above differential equation we get.

0 tr
M, In(A M, In(A " _ GM.n(A
rdr:fGin()dt;é/rdr:’/Gin()dt;:&*RfO - Gin()tf
Ve Ve "
R 0
So the ti ink is £ = gt )
o the time to sink is tf = sy 17y

(e) Evaluate this time for a hypothetical “Magellanic Cloud” with M, = 2 x 101°M on an initially
circular orbit of radius R = 50kpc around our Galaxy, with v. = 220km/s. Take A = 20.
Solution:

Substuting these values in the above expression

(50 x 103)2 - 220 x 103

ty = =3.28 x 10'%s = 1.04 x 10%yr = 1.04G
7= 276,67 x 10-11- 2 x 101011, e A r

So the sink time of the cloud is 1.04Gyr ]

2.6.5. If the effective radius of the satellite galaxy in the previous problem is Ry = 1.5kpc, estimate the
distance from the center of the parent galaxy at which tidal (differential) gravitational forces would
significantly affect the satellite’s structure.

Solution:
The distance scale is given by

1
M 3
Tt:<MS> Ry

Assuming M, = 2 x 10'° M froom previous problem and the mass of galaxy to be that of Milky way
M = 5.8 x 10" M,

(5.8 x 10M Mg,
Ty = P

1
3
1500pc = 488.2
2 x 10100, ) pe pe

So the distance for significant effect is 488.2pc ]



Chapter 3

Quantum Mechanics

3.1 Homework One

3.1.1.

(a) Consider two kets |a) and |8). Suppose {a'|ca), {a”|a),--- and (d'|B),{a”|B), - are all known,

where |a’),|a”), -+ form a complete set of base kets. Find the matrix representation of the
operator |a) (8| in this basis.
Solution:

We know every ket can be written as the sum of its component in the ‘direction’ of base ket
(completeness) so |y) can be written as

) =>_la*) (')
i
Let the operator |a) (8] act on an arbitrary ket |7).

) {Bl) = > la) (Bla’) (a|7)

So the component of this |&) (8]7) in the direction of another eigen ket |a?) is then given by the
inner product of it with |aj>

(Jo) (BI); = (@’ |a) (Bly) =D {a’|a) (B]a’) {a’|7) (3.1)

2
NXN

This anove expression can be written as the matrix form as

(o) (8] [(ala)(Ba’) (al[a)(Bla2) --- (a!
(o) (B | | {a2la) (Blat)  {a2|ab {8la®) - {a®

) (B
o) .<5

a7 [ ()
a¥) | 1 ()2

() Bn]  La¥|e) (Bla)  (a¥|a) (Bla*) -+ (a"]a) (Bla™)] L(IM)w
Since every (a'|8) is known each element <,B|ai> in above matrix can be written as the complex
conjugate of known <ai‘ﬁ >* So the matrix representation becomes

<a1‘a><a1’ﬁ>: <a1‘a><a2’ﬁ>: <a1‘a><aN‘3>:
w = | @l ls) @l (@) @) (a]o)

(@¥|a) (al]B)" (aM]a)(a?|B)" - (a¥]a)(a"|8)"
Which is the required matrix representation of |«) (5] ]

67
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3.1.2.

3.1.3.

(b) Consider of spin 1 system and let |o) and [B) be |S. = h/2) and |S, = /2), respectively. Write
down explicitly the square matrix that corresponds to |a) (3] in the usual (S, diagonal) basis.
Solution:

The basis kets are |S,;+) = |+) and |S,;—) = |—). The state ket |S,;+) = % (I4+) +1-)). So
the four matrix elements are

(a+)=1  (a]-)=0
1 1

1
<m+>:ﬁ(1+0):ﬁ (Bl-) =

The required matrix representation is

(+a) (Bl +) <+|a><ﬁ—>}_ 1 [1 1]

(=la) (Bl+) (~le)(8l=)] — v2 [0 0

Which is the required matrix representation of the operator in the basis |S,;+) and |S,;—) O
Using the orthonormality of |[4+) and |—), prove

. h?
[Si, S;] = icijuhSk, {S:, 85} = <2) dij,

Where, 8, = D(14) (1 + =) (+), 8y = (= ) =+ 1) (), Sz = () (+] = =) ()
Solution:
ih? ih?
So8y = A= 11 (=) (= + [H) (=1=) (H = =) () S+ =) (=) (= = ) (= = =) =D
i 2 i 2
SySe = % {l) (=) =) =) D FHR S = = FH =) = *% {l) (=[=1=) =1}
i 2 i 2 i 2
S0 8] = 82— 8450 = T (1) (=] = 1=} (=1} + o= {143 (=] = [=) (=1} = T2 (1) =] = =) ([} = ehs.
Since [Sy, Sy] = ihS, it immediately follows that [S,, S;] = —ikS, because [A, B] = —[A, B]. Collecting
all these leads to [S;, S;] = tg;kSk.
ih? ih?
{82, Sy} = 825y + 5y S = M) (=1 = [=) (=} = Al (= = =) (=[} =0
h? h?
{80080} = 828y + 808, = 25,8, =2 { (HH) +(=-) p = &

Identity operator

Similarly {S,, S, } = & {S,.9,} = &:{5.. 5.} = & {5, 8,} = 0:{S,, 5.} = 0:{S., Sz} = 0; which
can be copactly written as {S,,5;} = %2) 0;; for each operator leads to the required relation of the

commutation and anti commutation relation of the given operators. (|

The hamiltonian operator for a two-state system is given by
h = a(|1) (1] = [2) (2 + (1) (2 +[2) (1)),

where a is a number with the dimension of energy. find the energy eigenvalues and the corresponding
energy eigenkets ( as a linear combinations of |1) and |2))
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3.1.4.

Solution:
let the energy eigenket be |a) = p|1) + ¢|2). let the eigenvalue of this energy eigenket be a’. operating
this eigenket by the given hamiltonian operator we get.

hlay =a(|1) (1] = [2) (2 + 1) 2] + [2) (1) (p 1) + ¢ 2))
=a(p|l) +pl2) —ql2) +q|1))
=allp+q) 1)+ (p—q)[2)]

since we assume o’ is the eigenvaue of this ket we must have h |a) = o’ |a) thus

a'(pl1) +q[2)) = allp+q) 1) + (p — q) [2)]

since |1) and |2) are independent kets, the coefficient of each ket on lhs and rhs must equal. comparing
the coeflicients we have

a+a

a

—ap+ (a+a")g =0; S p=

+ad

(a—a")p+aq=0; %(afa’)a q+agqg=0; —sa?—d?+ad*=0; d=+V2

a

so the required eigenvalues of the operator are 4+v/2a.

the coefficient

= q=(1%v2)q

a++v2a
a
. since we have a free choice of one of the parameters we choose p and ¢ such that the energy eigenket
is normalized. so the required eigenket is
1

o) = (1 £V2) 1) + [2)) = ——

— (1= V2) 1) + ]2
— = (=VDm+p)

the above expression |«) gives the energy eigenket corresponding to eigenvalue +v/2a. (|

A beam of spin % atom goes through a series of stern-gerlach-type measurements as follows:

(a) the first measurement accepts s, = i/2 atoms and rejects s, = —h/2 atoms.
(b) the second measurement accepts s, = h/2 atoms and rejects s, = —h/2 atoms, where s, is the
eigenvalue of the operator s-7n with 72 making an angle 3 in the zz—plane wi respect to the z-axis.

(¢) the third measurement accepts s, = —h/2 atoms and rejects s, = /2 atoms.
what is the intensity of the final s, = —A/2 bean when the s, = i/2 beam surviving the first mea-
surement is normalized to unity? how must we orient the second measuring apparatus if we are to
maximize the intensity of the final s, = —#/2 beam?
Solution:

The First Stern-Gerlach measurement in S, is independent of the second Stern-Gerlach measurement
in v the probability of atom passing through each component is % Due to this measurement and the
Sn = —h/2 being rejected the system essentially forgets the previous measurement and the atom still
come out 50%. So the fraction of atoms passing through the third SG apparatus in S, direction is still
%. So the total fraction of atoms passing thourhg the third SG apparatus is % X % = i = 25%,

If the second SG apparatus is oriented parallel to the first apparatus then it essentially measures the
|S.;+) state of the atom which was what came from the first apparatus so it lets 100% of the atom
in |S,;+) state. And the third apparatus will let half of the second which is 50% of the atoms which
passed through the first apparatus. Orienting the second SG apparatus parallel to the first will let all
of the atoms, this is the required condition of maximizing the output of third. O
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3.1.5. Prove that if operator X = |3) (|, then the hermitian conjugate of the operator is Xt = |a) (3.
Solution:
Acting this operator X = |8) («| on an arbitrary ket |v)

X ) = 18) (al)
= (X" = (Bl {al)" (.- Dual correspondence)
= (v X" = (8l (4]a) (. (yle) = (aln)™)
= (X" = (y1e) (8] (- eld) = |8) ¢)
= <’Y| Xt = (v (Je) (B1) (".- Associative property)
= = |a) (4]
Thus if X = |B) (a| then XT = |a) (3] is shown as required. O

3.2 Homework Two

3.2.1. A two state system is is characterized by a Hamiltonian Hi1|1){(1] + Hi2 (]1)(2] + [2)(1]) + H22|2)(2]
where Hy1, Haz, and Hjo are real numbers with the dimension of energy, and |1) and |2) are eigenkets
of some observable (# H). Find the energy eigenkets and the corresponding energy eigenvalues.
Solution:

Let the energy eigenket be |E) = p|1) + ¢|2) and the eigenvalues be A\. OPerating thsi state by the
given Hamiltonian Operator we get

H|E) = Hu1|1) (1] + Hi2 (|1)(2] + [2)(1]) + H22/2)(2|(p|1) + ¢|2))
= Hup (1 [1)[1) + Hi1q (1 |2)[1) + Hiap (1 [1)[2) + Hi2p (2 [1)[1) + Hi2q (1 [2)]2)
+ Hi2q (2 |2)|1) + Ha2p (2 [1)2) + Ha2q (2 [2)[2)
= Hyip|l) + Hi2p|2) + Hi2q|1) + H22q|2)
= (Hup + Hi2q) [1) + (Hi2p + H22q) |2)
Since by assumption A is the eigenvalue of this state we have H |E) = A|E) which gives
Ap |1y + Aq|2) = (Hup + Hi2q) 1) + (Hi2p + H22q) |2)

Comparing the coefficient of each independent we get

Ap = (Hu1p + Hi2q) ; Aq = (Hiz2p + Ha22q)
H,2
= (A~ Hy)p— Hiq=0; p=
( 11)P 129 P X— Hp;
p— . H12 p— .
Hiop+ (H22 —A)g=0; = Hip N oy, q+ (Haz — A)qg = 0;

Solving this for A we get

1 1
\ = 5(Hl1 + Haz) & 5\/H121 — 2H11Hyo + 4H7, + H3,

These are the required eigenvalues of the given operator. This eigenvalues can be plugged back into
the given equation to get the values of p and q.

Hyo

=1 p=
Hoyy — Hyy |, 1
% - 5\/Hf‘l — 2Hy1Hyy + 4HZ, + H3,
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So the required eigenstates are

Hio
il\/fﬂ — OH\, Hyy + 4H2, + H2
2 11 114122 12 22

|E) = 1) +12)

Hiy — Hyy
2

The above eigenstae can be normalized if required to get the Energy eigenket. |

3.2.2. (a) Compute ((AS,;)?) = (S2) — (S.)? where the expectation value is taken for the S,+ state. Using
your result check the generalized uncertainity relation

1
((A4)%) ((AB)*) = {I([A, BY)
with A — S,, B = S,.
Solution:
Let |4) represent the |S; +) state. Then the expectation value of S, for |S,;+) can be calculated
as
h ih h
S:=5 (M H =120 Sy=5 R+ D) Se =5 (40) (H+ =) (+)s
h h h h
So[+) =5 (R I+ = ) [+) = 5 =) Sel=) =5 (IR I+ =) (D =) = 5 1+
Syl =S I+ D = S5 Sy = SR+ ) D ) = =S
So the expectation values are
h h
(S4) = (+Sal+) = (+]5 =) = 5 (+-) =0
ih h
(8,) = (HIS,1+) = (+] 5 1) = —ig (+]-) =0
h h h h? h?
2\ _ 21\ — Dy =28 = = 2 (4]=) = =
(82) = (+1SH4) = (HISuSul4) = (+H]Sa3 =) = 5 (+] 5 1+) = 1 (+-) = &
h ih —ih o h? h?
(S2) = (HISEH) = CHIS,8,14) = (+ Sy =) = 5 (+] 5 [4) = =i (+1-) = -
Since [Sg, Sy] = ihS, and |([Sm,5y]>|2 =[Sz, Sy]) ([Sz, Sy])" we can write
. , _ h h? A s
(S0 S,)) = (i18.) = ih (+1S:14) = ih (+] S 1+) =i (Sa, Sy))" = —i
The dispersion in S, and S, can be calculated as
h? h? h? h?
(A8:)%) =(S2) = (8:)" = 7 —0="T1  ((A8)*) =(8) —(Sy)° = |~ 0=
Thus finally
1
((AS8:)%) ((ASy)*) > 1|<[Sx’5y]>l2
R R? 1 (712) < ,h2)
— . — > |i= i
4 4 — 4\ 2 2
nt _ At
>
16 — 16

Which is true as required. O
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(b) Check the uncertainity relation with A — S, B — S, for the S+ State

3.2.3. Find the linear combination of [+) and |—) kets that maximizes the unertainity product ((AS;)?) ((AS,)?).
Verify explicitly that the linear combination you found, the uncertainty relation for S, and S, is not
violated.

Solution:

Let the linear combination that maximizes the Uncertainity product be p|+) + ¢ |—). Since we know
that the coefficients are complex in general and that the overall phase is immaterial, we can take p qnd
g such that p = r and g = se’® where r, s, § are real numbers.

l) = 7 |+) + se®® |-) +— DC — (a] = (|7 + (—|se™™

Since Operator S, = 2 (|4) (—| + |=) (+]) and S, = 2 (— |+) (—| + |—) (+]) ; e can find the expecta-
tion value

Sy |a) =

| St

() (= =) (HD) ([ 4) + se® =) = g(sei‘s [+) +71=))

(So) = (alSala) = | {7+ (~|se™® g(sei5\+>+rl—>)

Do DI‘I\D\D?‘I\J\D?‘

{rsei‘; + rse*i‘s}
8{615 +e —10 }

(0) = hrscosd

I
|
3
@
o
aQ
o]
1]

Also we can calculate the expectation value of S? which is
2 h i
(Sz) = (lSeSala) = (a] 8o 5 (s |+) + 7))
1 R2 )
= [+ (o) Tt + 561

2

r? 4 s%) = — ( By normalization condition)

=7 4

Which can be use to calculate the dispersion of S, as
2 N h?
((AS,)?) = (S2) — (S2)” = — — B*r?s® cos®(8) = vy ( — 4r?s 0082(6)>
By similar procedure we can calculate ((AS,)?) = (1 — 47252 sin*(9). So their product is

(a8.2) (85,2 = 2 (1 ( 4 cos2(5)> ’f( s sm2(5)>

4
?6(1 — 4r?25% sin? () — 4r?s? cos?(8) + 16r* s sin?(8) cos?(4))
2
= E(l — 4r25% 4 161154 5in*(0) cos?(0))
2
= E(l — 4r?s? + 4rts* sin®(20))

Since r and s are constrained by normalization as s = v/1 — r2. The two parameters for the variation
of the product is 6 and 7 (or s). The since sin®(26) can attain the maximum value of 1 whhich gives
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sin®(26) = 1;= 26 = Z = § = Z. So the uncertainity product reduces to

h2

((AS,)?) ((ASy)?) = 1—6(1 — 4r?s% 4 4rtst)

h? 2
= —(1-2r%"
16( )

The maximum value of this expression occurs when 2r2s? is the minimum, which by inspection is 0
at r = 0. Using this value 7 = 0 in normalization condition r? + s? = 1 gives s = +1. So the linear
combination we started reduces to

3.2.4. Show that either [A, B] =0 or [B,C] = 0 is sufficient for (¢’|a’) to be
Solution:
Let the common eigenket of compatible operators A, B be |a’,b'). Since they are observable the set
of these eigenkets form a complete set let them be |a’, "), |a”,b") - --]a™,b™) for n state (dimensional)
system. In the first way of invividually measuring the outcomes of B observables the total probability
of observing |c!) state is then

[(Ha")[ ZI(C Jal )|’ 0] )|

3.3 Homework Three

3.3.1. Using the rules of bra-ket algebra, prove or evaluate the following:

(a) tr(XY) = tr(Y X), where X and Y are operators
Solution:
The definition of trace of an operator is tr(A) = Z (a'|Ala’). Using this definition for operator

a’

XY we get
tr(XY) = Z (a'|XY]a') ( Definition)
= Z > (@'[X]a") (a"Yd) (D la"Xa"| =1
= Z Z (a"|Y]a") (/| X]a’) (Complex number commute)
=3 @y X (3 e =1
=tr(Y X) (By definition )
Thus tr(XY) = tr(Y X) as required O

(b) (XY)T =YTXT where X and Y are operators.
Solution:
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Let |a) be any arbitrary ket.
LetYia)=|) «DC— (4]Y =)

Using this fact and operating the arbitrary |a) by the operator XY we get,

XY |a) = X |v) (.Y |a) = |v) by assumption)
(ol (XY)T = (4] XT (. Taking DC on both sides)
(ol (XY)! = (o YTXT (Ol =(alYT)
Which implies (XY)f = XTyT O

(¢) exp(if(A)) = ? in ket-bra form, where A is a Hermitian operator whose eigenvalues are known.
Solution: ) .
Assuming the function can be written as eX = 1+ f(X) + % + % + ---, where X is an
operator in the ket space. We have

iT(A) _ Z A 'Y | ( Z |a'><a'|>

Here |a’) are the eigenkets of the operator A as it is given to be a Hermitian operator. Using the
expansion for e*f(4) we get,

/

2 3
eif(A) :Z <1—|—f(X)—|— / ;X) + / ?()A'X) +> |a’><a’| <~.-Z|a/><a/|>

a

=3 (a’> A ) + g (A o)+ ) (a| (- X (la)(8]) = (X ]a)) {81)
- (a’> I ) + g ) ) + - ) (@|  (f(X)|a) = f(a)|) for Hermitian X)

-3 (1 1) + g )+ ) @) (@] (. (ala)) (8] = a(laX8)))
=2 /'Y

Which is the required form for the operator ef(4), O

3.3.2. A spin 1/2 system is known tobe in an eigenstate of S -7 with eigenvalue i/2, where 7t is a unit vector
lying in the xz-plane that makes and angle v with the positive z-axis.

(a) Suppose S, is measured. What is the probability of getting %/2
Solution:
For a two state system the general stae of system can be represented as |n;+) = cosg |[+) +
el sing |—), where « is the polar angle and f is the azimuthal angle. For this problem the polar
angle is a = 0 and azimuthal angle is 8 = 7. So the given system and |S,;+) states are
N 7 8l 1 1
i) =sin g 5= S+ =— 7=
ity =sin g 1) eos T |)s [Sai) = 4+ o)
Since by definition the probablility of measuring any state that is known to be in |beta) in a state
la) is given by |(a]B)|>. So the probability of measuring |S,;+) state when the system is known
to be in |n; +) stae is

)
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52+ 4 = | (5 61+ 5 (1) (sin g 1)+ cos 1)

1 v 1 vy

= |—=sIn - + —=Ccos —

‘\/i 2 V2 2
1 1

= fsinzl—i—?—sin

PR RN
1
= 5(1 + sin~y)

2

licosl—k
2/2 2

So the probability of measuring the |7) state in |S,;+) state is (1 + sin~y)/2. O

(b) Evaluate the dispersion in S, —that is (S, — (S;?)))
Solution:
The S, operator is S, = 2(|+)—| 4+ |=)+[). The result of S, state operated on the system at |7)
is
. h . Y _h 7 h . v
S ) = D1+ KD sin D 4+ cos T 1)) = eos L1+ Hsin ] |-

And the dual correspondence of the state [n) is (| = sin 3 (+] 4 cos 3 (—|. So the expectation
value of S, is

h h h h
(Sz) = (N|Sy|R) = (sin% (+] —|—COS% ( ) <2 cos% |+) + gsin% |—>> = 5(2sin%cos %) = §sin”y

Also the expectation value of operator S2 is

2

= (sing (+|+ cos% (*|) <T(Sing |+) +COS% |>>>

h2

= 7 (sin” 5 cos” )
h2

s

(2) = (1SS = (sin ] (+]+ cos ] (1) (GUHK-1+ 1004 ) (G eon ] 14+ sin ] 1))

Now the dispersion by definition is

2\ — /g2 2 I h . ton :2 L
(ASZ) = (52) — ((S)) =7 (3] = Z(l—sm 7) = o’y
Which gives the dispersion in measurement of S, of the system in |7) . O

3.3.3. Construct the transformation matrix that connects the S, diagonal basis to the S, diagonal basis.
Show that your result is consistent withthe general relation U = Z ‘b(r) ><a(r)
T

Solution:

The states |S,;+) in the |S,;+) = |£) state is given by |S,; ) = %(|+> +]-)). Since we know the

transformation matrix form is

(Sz; +|+) <Sx;+|—>] 1 {((+|+<—I)I+> (<+|+<—I)—>}:\1f{1 1}
2

(Sas =) (Sas=1=)] ~ V2 [((H = (=D 1+ (= (=D 1)
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Let |p) = a|+) + a|—) in the old S, basis. such that a = (+|p) and b = (—|p). This ket is transformed

into
11 1][a] 1 1

Mp = 7 L _J M = —2(a+b) [+) + —Q(a —b)|-) (3.2)

1 1
= () =D+ (1) = ) (33
() 12) CHIph + = () = 1)) 1) (34
= (182574 (H +1825-) (=) ) (35)
Which is in the form of 3 [0"¥a"|. O

3.3.4. Prove that (x) — (x) + dz’, (p) — (p) under infinitesimal translation.
Solution:
Since given

[z, T (dz)] = dx;= =T (dx) — T (dx)x = dx; T (dx) = dx + T (dx)x

Let the state of system under translation be |3) = T (dzx)|a), thus (3| = (a| TT(dz). Now the ex-
pectation value of system before translation is (x) = (a|x|a). The expectation value after translation
is

() = (Blx|B)
o|T T (dz)|a)
o| TT(dx) (dz + T (dz)x)|a)

f(d)
(dx)
[T (de) + T1(de) T (da)x|c)
(dx)
(dx)

=

[T (dx) + x|a)
o| T (dx
+ ()

So the expectation value of position after translation is (x) + dz.

R

) + {alz|a)

(
=
(
=
=
=
=dzx

Similarly for momentum

|B8) = T(dz) |a) , thus (8| = (| TT(dz). Now the expectation value of momentum before translation is
(p) = (a|p|a). The expectation value after translation is

(p) = (BlplB)

(a|T"(dz)pT (dz)|a)

= (a|T"(dz)(0 + T (dz)p)|a)
= (a|T"(dz)T (dz)pla)

= (alpla)

So the expectation value of system after translation is still (p). |

3.4 Homework Four

3.4.1. Some authors define an operator to be real when every member of its matrix elements (b'|A|b”) is real
in some representation. Is this concept representation independent? That is, do the matrix elements
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3.4.2.

remain real even if some basis other than {|b')} is used? Check your assertion using z and p,.
Solution:

Let some other basis |a’) be used to represent the matrix then the new basis is related to the old basis
by the transformation |a’) = U |b’) where U is some unitary operator.

o) =U'); = (a'| = ¥/|U" = @0
The matrix elements in this new basis then become
(a'|Aa”) = (VU AUIY)
If this has to remain real in the old |b’') basis then it must equal to the old matrix element
YUTAUPY = (VAP ; = U AU = 4 = AU = U A; = [U,A] =0

But it is not necessary that the operators U and A commute i.e.,[U, A] = 0. Thus the matrix element
of an operator may not remain real in a different basis if it is real in one basis.

Checking this assertion with = and p,. We know that operator x is hermitian in = basis so that the
eigenvalues of x in position |2’) basis are real. Which means the the matrix elements (z’|z|z") =
2 (2 |2y = 2" §(a’ — x”") are all real because z” is real eigenvalue of hermitian operator of x.

Now the matrix elements of x operator in p basis are

/ Wlele’y (@' |p") de!’ = / 2 (o)’ (2'|p")

/ /) AN /
= 27;i/x’exp(— hx> exp(lph$>dx— 271Th/m'exp<i(php)x>dm’

making substitution ¢t = p” —p’ and y = 2’ /h

(@'|zlp")

1 h )
hyehdy = - [ yeitvd
= o7 [ hyehdy = o / ye'dy
and using differential under integral sign % [edy = [iye'dy = [ye'dy = 14 [¢edy we can
write the above expression as

lalp”) = 5 - d/e dy:ii ei®” ””dy—ﬂi?ﬂ( —p)===6(p" - 1)

T 1 dt 2wt dt 27t dt i dt

This value is clearly imaginary as delta function is purely real. This shows that although the matrix
elements of operator x in position basis are real the elements are no longer real in momentum basis. [J

(a) Suppose that f(A) is a function of a Hermitian operator A with the property Ala’) = a’|d’).
Evaluate (b"|f(A)|b') when the transformation matrix from the a’ basis to the b’ basis is known.
Solution:

The matrix element for the transformation matrix are <b(i) ’a(j)> for i,5 € {1,2--- N} where N is
the no of independent state of system. The given expression can be written as

V' fA) = Z ("|f(A)]a") (a'|b") (" Inserting Z la’¥a'| =1)
= Z (b"| f(a*)]a’) {a[V) (. f(A) |a') = f(d')|d"))
= Zf (v"]a") (a']t") (. (alel) = c(alB))

Since all the matrix elements (b”[a’) and (a!|t') = (b'|a’)" are known the expression is completely
known. O
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(b)

Using the continuum analogue of the result obtained in (3.4.2a), evaluate (p”’|F(r)|p’). Simplify

your expression as far as you can. Note that r is /22 4+ y* + 22, where z,y, and z are operators.
Solution:

Since the position operators z,y and z are compatible operators (commutative i.e., [z,y] =
0,[y,2) = 0 and [z,2] = 0) we can represent the position eigenket as |2/,y/,z’) = |r’). By
problem (3.4.2a) above we get

WPl = [ TR ) (') P

But we know the wavefunction of momentum in position basis as
p-T wp’ ! —ip’ -7’
(plr)=e A = (p"|r')=e N and (r'lpy=e N

Thus the expression becomes
oo i(p :
W) = [ Fee b d

— 00

This integral gives the matrix element of the position operator F(r) in the momentum p’ basis. O

3.4.3. The translation operator for a finite (spatial) displacement is given by

30 = ep( 21,

where p is the momentum operator.

(a)

Evaluate [x;, T(1)]
Solution:
We can write the dot product of vectors p and displacement I as p-1 =" p;l;

[2:, T(1)] = [mi,exp<_i2.l>} :ihaii exp<_izhipil") :ml<;) exp<—iph'l> = 1T()

This gives the expression for [z;, T(1)]. O

Using (3.4.3a) (or otherwise), demonstrate how expectation value of (x) changes under translation
Solution:

Let |) be any arbitrary position ket. Then the expectation value of for one of the component of
position of the system (particle) is given by (x;) = («|z;|a). Let the position ket under translation
be |3) = %(I) |a). The dual correspondence of this ket is (3| = (a|T(l)!. Now the expectation
value under translation is

(Blzi]B) = (alTW)2:T()]a) (3.6)
But by the commutator relation (3.4.3a) we have

Since we know that the translation operator is Unitary, T(1)TT(l) = 1. Operating on both sides
of this expression by T(I)T we get
T e T(W) — Tz} = TOTLT()
= T30 -0 Tz = LEO)TTA)
= T 2, T1A) = 2 + 1;



CHAPTER 3. QUANTUM MECHANICS 79

Using this in (3.6) we get
Blzi|B) = {(a|z; + li]a) = {(a|zi|a) + {a|l;]|a) = {(a]z;|a) +1;

Now that we have found the expectation value of every component of @ operator. The expression
for this operator becomes

T
(Blzi|B) = (alzila) +1i; = (x) —> (T)yq +1
This gives the expectation value of position operator under translation. ([l

3.4.4. For a Gaussian wave packet, whose wave function is position space is given by

) x
ik — =—

<mm=[¢iﬁkm[ Q;}

(a) Verify (p) = hk and (p*) = % + h%k?
Solution:
The expectation value of momentum p in the state |«) is given by (p) = («a|p|a). But by com-
pleteness of the position basis kets we can write the state |a) as

) = (alpla) = [ d&' (ale') («lple)
But the operator identity
0
(&/lpla) = —ih— (a'])

Enables us to write
W)= [l (=i ) 1)
oo ox'
[ee) 1 ) :L‘/2 ) ] 1 ] .’L‘I2
= /_OO dx’ lm] exp [—zkx’ - 2d2] (—zh()x,> ld\/E] exp {zkx’ - M?}
1 [e%e] , ) ) x/ l’/2
“a () ) o)
1 [e%s} $/2 ih [e’e) x/2
:mlihk/_oodx’exp(—(ﬁ) 2‘/_Oox’eXp(—d2)]

1 ih
= —— |hkv/md + —
77 |PvEe 59
= hk
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Smilarly the expectation value of operator p? can be written as

o] a 2
:/m da’ (a]2') <—z’ha$/> (@'|a)
e} 1 x/Q 62 1 $/2
= da’ —ika' — | [ —h? — ka' — —
[ [m] e"p[ " 2d2K 8x)[ dﬁ] e"p[’ ‘ 2d2}
7\ 2 2
“ae (—ff(k—;z) )(-2)
2zkh2 2z x'?
22
LT > & 2ikh? [ 2 2 &
df[( +h2k2) /Ooexp<fl2>dx/+ zd2 /oox’exp<z2>dx - x'zexp<z2>dx/}

1 B2 2ikh? K2 [ /md®
h2k? d

df[( * )f+d 0= d4(2>}

7:L2 9 o 7:L2

=2 TR T 5e

2

%_’_thQ

Thus the expectation values of the wavefunction is found as required. |

(b) Evaluate the expectation value of p and p? usig the momentum-space wave functions as well.
Solution:

For the momentum space wave functions we can write

(p) —/<alplp’> (p'|er) dp’z/p'|<p’\a>l2dp’

= M/p eXp{ ﬁhk)ﬂdp/

_ 71\7 {/p' exp(_;i;)dp' +/p/ exp(g)_hfky)dp'}
d [R’kyT

- hf{ d ]_hk

Now for the expectation value of the square of momentum operator.

(r*) =/ (alplp’) (p'|a) dp’z/p’2|<p’\a>l2dp’

(0 — hk2]
i [l
d_(VEh | Wk T
T hy/r\ 2 & d
h2 212

So the expectation value of the operators are the smae in the momentum state wave functions too.
U

3.5 Homework Five

3.5.1. (a) Prove the following
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. 0
L @/fala) = ih (')

nwmm:/@%<> 9 a0,

where ¢, (p’) = (p'|a) and gZ)g( ") = (p'|3) are momentum-space wave functions.
Solution:
We know

(z'p) =

1 ip’:v’) 7 o
ex ; and gy = oms(t — ¢!
oo (t 1)

— 00

With the help of these two relations we can simplify the quantity we want as

<Mﬂ®=/ﬁfWMWHM® (v/¢MMMW=U
=/¢%m5MwWMﬁ (o pale’y = = (')
— /dp///zl <p/|xl> <I/|p/,> <p//‘a> dl_/ (_., /dp// |p//><p//| — 1)

1

o 1 ip”ﬂ;"

_ dn" / T _ Z dz’
/ p /:v eXP<h Joor P — ) (P"la) dz
2 h dp”/l’ exp< p ) > <p//|04> dz’

T

We can use integral under differential sign to evaluate the dz’ integral as

dip, exp(i(p' — p")x ’)dx’:/x exp(i(p' — p")a")da’

Using ths in the dz’ integral above we get

_ 1 //h2 0 i(p/*p//)xl /1 /
=5 | P —iop/ / eXp( h (p7la) dz

1 Km0
= — dp”—Z??W(S(P —p") (p"|c)
= ih {p'a) (2 f st = 1)

This gives us the requied result.

(Slsla) = [ dp' (Blp') @/ lale) (.7)

The result above is (p'|z|a) = iha‘z

- (p'|a) Substuting this in (3.7) we get
0
(Blsla) = [ dp' (Blp") ih ) (o)
Writing (8[p") = ¢5(p") and (p'|a) = ¢a(p’) we get

(Blele) = [ /o5 win 6u0)

This is the requied expression. O
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3.5.2.

3.5.3.

(b) What is the physical significance of

A=)
exp (h)

where x is the position operator and = is some number with the unit of momentum? Justify your
answer.

Solution:

In the position eigenbasis the position translation operator is LI(l) = exp (%l) where [ is a constant

of unit of lenght and p is the momentum operator.
We have here the roles of operator = and p changed and [ and = changed. Which suggests that
this operator function can works as a momentum translation operator in momentum eigenbasis. []

If the Hamiltonian H is given as
H = Hyy [1)(1] + Haz [2)2| + H12 [1)2]

What principle is violated? Illustrate your point by explicitly attempting to solve the most general time-
dependent problem using an illegal Hamiltonian of this kind. (Assume Hi; = Hao = 0 for simplicity.)
Solution:

For a operator to be a valid Hamiltonian it has to be a Hermitian operator. We can check if this is a
Hermitian operator.

HY = H{y 1) (1] + H3, 2) (2] + Hiy 1) (2| = Hyp |1) (1] + Hoz [2) (2] + Hi2 [1) (2

Since H' # H the given hamiltonian is clearly not Hermitian. So this operator the energy eigenkets
won’t be real. Also, the time translation operator U(t) = exp(—ZHTt) will not be unitary which would
make the time evolved states not conserve the inner product so, it violates the principle of probability

violation.

Setting Hy1 = Hay = 0 the Hamiltonian becomes H = Hys |1)(2|. Lets check the unitary property of
the unitary operator

UTU(t) = exp(i}gt> - exp (tht> = exp<i(HTh H)t>

For the operator to remain unitary, the exponential should be zero but since H' # H the exponent
will be nonzero and it violates the principle that the time evolution operator si unitary. O

Let |a’) and |a”) be eigenstates of a Hermitian operator A with eigenvalues o’ and a”, respectively
(a’ # a). The Hamiltonian operator is given by

H = a’) 6 (a"| +|a") 6 {a']

where § is just a real number.

(a) Clearly, |a') and |a”) are not eigenstates of teh Hamiltonian. Write down the eigenstates of the
Hamiltonian. WHat are their energy Eigenvalues?
Solution:
Let the energy eigenket of this hamiltonian operator be |a) = pla’) + ¢ |a”). And E be the energy
eigen values. So operating by H on this state leads to

Hla) = (') 8 (a"| +[a") 6 (a')(p|a) + qla”"))
— 5qla’) + bpla”)
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If this is to be the energy eigenstate then it should equal F |a) = Ep|a’) + Eq|a”). Since |a’) and
|a’) are orthogonal states, the coefficient comparision leads to

_dq
T FE

Eq = p; :>Eq:5%]; = FE =46

Ep = dq; =Dp

So the energy eigenvalues are E = +§. Also since we require the eigenstate be normalized we
require p? 4+ ¢> = 1. This results in

So the requried energy eigenkets are

1 / 1 1 !/ 1
ap) = ——(la’)+|a")); a_)=—(la") —|a 3.8
lag) \/i(l )+ 1a”)) la-) \/i( |a’) —]a")) (3.8)
Where |ay) is the eigenket corresponding to eigenvalue 46 and |a_) is the eigenket corresponding
to eigenvalue —§ O

Suppose the system is known to be in the state |a’) at t = 0. Write down the state vector of
Schrodinger picture for ¢ > 0.

Solution:

The time evolution operator is U(t) = exp(—“{Tt). Since |a’) are not the eiergy eigenkets, we can
write them in terms of the eigenkets of Hamiltonian operator. From (3.8) we can add and subtract
the two energy eigenkets to find

no_ 1 "mo_ 1
|a") = E(Ia+>+ ) ") = ﬁuw —la-))

Application of time evolution operator to |a’) leads to

(o) o) = oxo( =0 ) ) =exp(( =50 ) lla) o) = 5o o) + e fa)

Again the application of (3.8) we can convert back to the basis states given

1 5t 5t 1 5t st

N 4"\ — D (ot R 19t I TR LR "

o) = la") = 5% + e ) [0) + S — ) )
2cos(‘s—ht) 2115111(%)

1 s¢
a) +1a")) + €7 (

U(t) o) = Lok =

2

Euler identity can be used to convert the complex exponentials to sines and cosies, which give
ot ot
Ut)|a'y = COS(h) la’) +isin<h> la”) (3.9)
This gives the time evolution of state |a’) under this hamiltonian. |

What is the probability for finding the system in |a”’) for ¢ > 0 if the system is known to be in the
state |a’) at t = 07

Solution:

The probability of finting the system knon to be in |a’) at a later time ¢ > 0 is given by

| (a”U(t)|a’)|* which can be evauated using (3.9)
1 sin ﬁ : = sin? ﬁ
I B R

(" {COS@) o) —I—isin((;;) Ia”>]

So the probability of finding the |a’) to be at |a”’) at a later time is the oscillating function. The
physical situation corresponding to this problem is a Neutrino oscillation. O

2

P=|{a"U@®)ld)* =
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3.5.4. Show
/ _ 1 1 /OO ’ p'z r LQ _ d —(p' - hk)2d2
P'|a) = NoEACEIW 7oodx exp h +ikx 5 ) = hﬁexp 572 .
Solution:

Considering the factor inside the exponential

—ip'a’ /_ﬁ__i 2 o2, _iplx /
7 + tkx 52 = o x 2d° | ik 7 x

If we let the constant terms t = d? (zk‘ P z) then in the exponential we get

—1
2

Completion of square -1

22
With this the integral becomes

oo x/? t2 , t2 oo lEl 2 ,
exp ok - exp 22 dx’ = exp o expq — E dx

This integral is a standard gamma function whose value is

/O;exp{—(\/xild>2}dx/:2/Oooexp{—<f§/d>2}dx _ VT -2v/2d

Using this in our original equation we get

(¥'la) = \/;TH(M) exp(—;;)md

We can substitute back the variable ¢ back to get

1= i) (o= G (3 4

= \/Eexp [—(p’ ;h};k)%ﬁ] .

Which is the required solution O

/2—2t$/) .%'/—t)Q—tQ)

3.6 Homework Six

3.6.1. Using the Hamiltonian

H= —(GB)SZ =wS,
me

write the Heisenberg equation of motion for the time-dependent operators S;(t), S, (t) and S, (t). Solve
them to obtain S; 4 . as functions of time

Solution:

We know the commutaion relation for spin operators [S;, S;] = ifie;;1Sk. And since the time derivative
of the operator in Heisenberg picture is

d

A H
dt zh[ ]
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3.6.2.

We can write the time derivative of the spin operators as

d 1 1 1

29 — 219 H = = — —0=

@ = il Hl = 8 w8 = 70 =0

d 1 1 w

dtS‘T ih[S‘T’ ] Z_h[SI,wSZ] Z_hthy wSy
d 1 1 1

dtSy ih[sy’ ] Z_h[Sy,wSZ] wihtha: wSy

By similar fashion we can find the second time derivative of the operators as

d2 d/d d
dtQSZ_dt(c‘ltSZ> “a

2
¢ s, = d(ds>:d(—wsy):—w2sx

A" T ae\dt"") T dt
d? d/d d
— 8, =—(—=8,] = —=(wS,;) = —w?S
de2™?  dt (dt y) dt (WSz) = —w=Sy
Since the first time derivative of operator S, is zero, it is constant over time. For g—;Sz = —w?2S, forms

a Ordinary Second order differential equation in operator S,. (Assuming derivatives are well defined
for operators) We can write the solution as

S, = Ae™ ! S, = Be ™!

Where A and B are arbitary constant (complex) numbers.

Consider a particle in one dimension whose Hamiltonian is given by

2

_r
H—2m+V(x)

By calculating [[H, x|, z] prove

52
ST (@ fela!) P (Bar — Ear) = o,

2m

where |a’) is an energy eigneket with eigenvalue F,/

Solution:
Since x is Hermitian operator and V(z) is pure function of 2 the commutator of z and V(z) is zero

ie, [z,V(x)] = 0. By similar arguments the commutator of p and % is zero i.e., [p7 %} =0 So we
can calculate the commutator
2

[H, ] = Bn +V(x)7x] = %[p?w} = —ih%

Also we can simplify the commutator as

1201 = [ ] = Py = P
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the expectation value of the operator [[H, z], z] can be calculated as
([[H, 2, 2]) = (a"|[[H, ], x]|a")
= (d"||[Hz — zH, z]|a")
(" |Hz? — xHx — xHx + 2*H|d")
= (a""|H2?*|a") + (a"|x*H|a") — 2 (a" |z Hx|a")
— Bur (a"[ala") + Bur (a"[a%]") - 2 (" |oHala")
=2E, (a"|2*|a") — 2 (a" |z Hx|ad")

Now the quantity (a”|z2|a”) can be written as
(a"|a*a") = (a"|zzla") =) (a"|z|a’) (a'|z|a") Z| (a"|z|a’)”
a/
Similarly we can express (a”|zHz|a") as
2
(a"|zHz|d") = Z (a"|zH|a") (a'|z]a") ZE "z|a’y {a'|z]a’) ZE“'| (a"|z|a")|
a/

Finally these can be substitued to give

([[H, —22 w — Ba)| (a"|z|d)|?

But since we calcluated the epectation value to be —%2 we can write the expression

h2
2m

> (Bar — Eon)| (a"]a]a’)]* =

a’

This is the rquired expression. O

3.7 Homework Seven

3.7.1. Consider a particle in one dimension whose Hamiltonian is given by

By calculating [[H, z], 2] prove

h2
5 el (B~ Eur) = 5

where |a’) is an energy eigneket with eigenvalue E,
Solution:
Since z is Hermitian operator and V(x) is pure function of  the commutator of x and V(z) is zero

ie., [z,V(x)] = 0. By similar arguments the commutator of p and —Zn is zero i.e., [p, %} =0 So we
can calculate the commutator

[H,z] = {2?;1+V( ), ] - %[p{ﬂ :_m%
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Also we can simplify the commutator as

(#,2].a) = [in 2 ] = Py o = 1

the expectation value of the operator [[H, z], z] can be calculated as
([H, 2], 2]) = (a"|[[H,=],z]|a")
= (d"||[Hx — zH, z]|a")
= (a"|Ha* —xHr — xHx + 2*H|d")
= (d""|H2?|d") + (a"|z*H|a") — 2 (a" |xHz|a")
= Eun {a"|2%a") + Eun (0" |2?|a”) — 2 (" |xHz|a")
=2E, (a"|2?|a") — 2 (" |z Hx|d")

Now the quantity (a”|z?|a”) can be written as
(a"[a®|a") = {a"[ax]a") =Y {a"|a]a’) (a'|z]a") Zl (a|]a’)[?
a/
Similarly we can express (a”|zHz|a") as
(a"|xHz|d") = Z (a"|zH|a") (a'|z|a") ZE "z|a’y {a'|z]a’) ZE“'| (a"|z|a’)|?
a/

Finally these can be substitued to give
2
([H.a],2]) =2 (Ew — Eor)| (a"|z]d")]

But since we calcluated the epectation value to be —%2 we can write the expression

Z(Ea’ - Ea”)' <a//|x|a/>‘2 = E
" 2m

This is the rquired expression. |

3.7.2. Consider a function, known as the correlation function, defined by

where z(t) is the position operator in the Heisenberg picture. Evaluate the correlation function explicitly
for the ground state of a one dimensional harmonic oscillator.

Solution:

The operator in Heisenberg picture change with time. Time evolution of operator x is Heisenberg
picture is

< t
x(t) = z(0) coswt + it

p(0)

where z(0) and p(0) are position and momentum operator at time ¢ = 0. Thus the correlation function
becomes

sin wt

C(t) = (x(t)x(0)) = <x(0)2 coswt + p(O)(mO)>

sin wt

= <x(0)2> coswt + (p(0)z(0)) mw
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If we denote x(0) and p(0) by just z and p and the ground state of harmonic oscillator by |0) we get

sin wt

C(t) = (0|2*|0) coswt + (O|px |0>

The operator x and p in terms of creation and annihilation operator are

(+al)  p=iy B )

Tr =
2mw

h
o 2mw<a2 +aa’ + aTa + (a")?); px = i§(a2 +aa' —ala — (af)?)

Thus the ground state expectation value of operators become
h I A
(Of10) = gy (Oa” + aa +alat (a*>2>|0> = 5o (Olaallo) = 50
i ih
(O|pz|0) = 0} (0]a® — aa’ + afa — (a7)?|0) = <0|aaT|0> 12

Thus the correlation function becomes

1h sin wt
coswt + —
2mw 2 mw

c(t) =

3.7.3. Show that for one-dimensional simple haronic oscillator,

(0]e#]0) = exp [_’Wm}

2

where x is the position operator.
Solution:
The expectation value of 22 in goround state is

h
2 —
(0]%0) = 5

mw

So the RHS of above expression becomes exp[ } The LHS can be evaluated as

01c10) = [ da’ 0}l (0
/dl‘/ ikx’ O|.’17 < /‘0>

/dl‘l zkm /|0 I

The ground state wave function for harmonic oscillator is

o= (i) | 5(5)
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Where xg is 4/ % Thus the expectation value becomes

e are) oo (2) o
~(are) o (2] o
(e o -5 -
() () [l (-5

)(42)(45)

dz’

- (7o)

k2R
=exp|—
P dmw
This shows the LHS and RHS are equal proving the proposition. O

On the other hand
(0le10) = (0]e™V'z5 (=)o)
= (0fe™VmE etV 35 o)
— (0]¢*V sV s |1)
= eV s <O|eik\/%a|1>
0)
= ¢!V ms eV s (0]0)

. /R
= ezlk 27:.(.\1

; R ; R
= eV ams <()|elk Imw

I don’t see why this approach leads to the wrong solution?
3.74. Let

h2
Jy = hala;, J, = o <a1a+ —ala_ ) N = aLaJr + aia,7

where a4 and al are the annihilation and creation operators of two independent simple harmonic
oscillators satisfying the usual simple harmonic oscillator commutation relations. Prove

2
N
[, Ju] = +hJe,  [3%,0]=0, J2= (h) N[

1|.
2 2+]

Solution:
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The commutator [J,, 4] can be calculated as

52
[ Jy] = — [aLaJr - aia_,aia_}

ai {aia_,a+} —&—ai {aia_,a_} + {aia_,aﬂ at + {aia_,aT } a_

= ai [ai,a@ a_ — ai [ai,a_} ay + ai [a]t_,a_] a—
2
_ (al) [ay,a_] — al [al,a,} a_ — {ai,aq a’

Since {a+.ai} and {a,.ai} are independent operators acting on different (independent) systems.

2
52
2
52
2

The following commutation relation holds
[aJr,aH =1, [al,a,} =0, [at,a@ =0, [a,,aq =1, Jay,a_]=0

Using these in the expression above we get

h? 2
[JZ,J+]:2{al-l-a_—a1-0~a++ai-1-a_—(ai) 0—a' -0-a_—0-a*

P Mot i
=5 {2a+a_] = h[ha+a_] =hJy
Similarly the commutator of [J,, J_] can be calculated to be [J,, J_] = —hJ_

By definition J% = J, J_ + J2 + hJ,( Sakurai 3.5.24). Using this we can write
[J,J.) = [JyJ- + J2 + h., J.]
= [JpJ_ L)+ [J2, 0] + B2, 2]
=Ji [, L)+ [J4, J:) T +0+0
= Jy{hJ_} +{-hJy }J_
=hJyJ_ —hJyJ_
=0
From definition

JP=JiJ_+J2+NJ,

JiJo = FLQaia,aT a4. Similarly the other terms in the definition are

K2 2
JZ2 = T (aiaJr — ata,)
h2
Z{aimraimr — aia+aia_ —al a_aia+ + aia_aia_}

So J? becomes
SRR ol GRS S S S S SR 2t 0 atan ol e — ot
Je = Z{a+a+a+a+ —ajaya_a_—ala_ayay + a_a_a_a_} +h%ala_alay + o) (a+a+ - a_a_)
R? R? 1
= Zalm_ (ala_,_ + aT_a_) + 5 <ala+ + aT_a_) <1 + 2aJr_a_>

K2 ala ala_
_ T T +%4 -
—?( +a++aa><2+1+ 9

n: (N
= N(=+1
(3 )

Which completes the proof. O
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3.8 Homework Eight

3.8.1. Consider a One-Dimensional simple harmonic oscillator.

(a) Using
A=V =) o VR,
evaluate (mlz[n), (m|p[n), (m|{z,p}|n), (m|z?n) and (m|p®|n).

Solution:
Given the definition of a and a! we can express operator = and p in terms of these operators as

h hmw
_ 1 — _ T
xr = 2mw(a—|—a) pP=1 B (a a)

The result of operator x and p on any state are

x\n>:\/2£w(a+aT)|n>:1/ h (a|n)+aT|n>):\/%(\/n+l\n+1>+\/ﬁ|n—l>)
plny = it/ "0 (0! — a) oy = i1/ 2 (@l n) — a ) = ig/ "2 (VaE Tt 1)~ Ve — 1)

We can calculate these as

ﬁ

h h
(m|z|n) = 5= (m)] (\/n +1n+1)++vnn— 1>) M[ N+ 10 nt1 + \/ﬁém}n,l}
. [hmw hmw
So this gives the matrix element of all the operators given. O

3.8.2. Consider again a one-dimensional simple harmonic oscillator. Do the following algebriacally— that is,
whout using wave functions.

(a) Construct a linear combination of |0) and |1) such that (z) is as large as possible.

Solution:

Let the linear combination of |0) and |1) be |a) = |0) 4+ se¢? |1). Where 7 and s are real. We can
always choose r and s real because the overall phase of the state doesn’t matter and J takes care
of the phase difference. The dual correspondence of |a) is (a| = (0|r 4 (1] e=?s. The expectation
value of operator x in this state is

(alzla) = (0] r + (1] e~ s)a(r |0) + se” |1))
= 72(0|2]0) 4 rse®® (0|z|1) + rse (1]2|0) + s (1]z|1)

/ h / h
-0+ rse' —|— rse” + 52
h
=rsy/ —— ( “5—1—6_“5) 24/ 75COS 0
2mw e Qmw

2cosd

The maximum value of this expression is when § = 0. Also if we want normalized state ket then
s = +/1 — r2. The maximum value of rs = max(rv/1 — r?). The maximum value can be obtained

d(rs) d(rv1—-r%) T2, 2r B 1—r2—9p2 _ 0 :Ma_i
dr dr B W1 —1r2 Vi—r2 ) 7 B
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Substuting this value of r for s = V1 — 72 gives s = % So the linear combination of |0) and |1)

that maximizes the expectation of x is

1 1

\/5(|0> + 1) = (ol = E“O' +(1))

The eigenvalue of operator H in general n stae of simple harmonic oscillator is

)

Hin) = <n+;)ﬁwn>

In the schrodinger picture the time evolution of state |a) is

_ U _ Lo — it _ L1y —3/2iwt
Ut) o) = e~ |a>—ﬂ(e 10) + e 1))—\@(6 0) + e |1>)

The dual correspondence of this time evolved state is

<a|L{T(t) — %(el/m‘wt <0| + 63/21‘0.;1‘, <1‘)

Again the operator z on state |0) and |1) are

x|0>:\/Z(a+aT)|0>: 2:M(a|0>-|-CLT|0>): %|1>
2Zw(a|1>+aTI1>)=\/E(\/MH'O))

z|l)y = (a+aT)|1>:

2mw

Thus the expectation vlaue becomes

<a|L{T(t)xZ/l(t)|a> _ %(el/%wt <0| + 63/2iwt <1‘)(£\% (671/2iwt |0> + 673/2iwt |1>>

1/ h ) )
— 5 5 (ezwt + e—zwt)
A/ h t
= COS W
2mw

Thus the maximum expectation value on schrodinger picture is (z) = % cos wt.
Also in the heisenberg picture the time evolution of operator z is
sin wt
t) =z(0 t 0
x(t) = 2(0) coswt + p(0) )

So the expectation value of x(¢) is given by

(a(1)) = (2(0)) cosot + {p(0)) " = (afala) coswi + {alp(0)]0) ot = [ cosw

x = (x(0)) cosw = (az|a) cosw e @ = cosw

P mw P mw 2mw

So the expectation value are same in both pictures. To calculate (Az?) we need (z?) and (z)
since we already know () we can calculate <m2> as

1 1 . 1. 1
5 (0l2]0) + Se " (0[a2[1) + e (112%[0) + 5 (11a?]1)

1 h | h h
=4/ — /(1 -
2V 2mw 2mw( +0+0+3) mw

(al2?|a)
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Thus
h h h h
Az?) = (22) — ()2 = = - 2 cos?wt = ——(2 — cos? wit) = ——(1 + sin? wt
(Az?) = (2?) — (z) T S 5w Qmw( cos” wt) Qmw( + sin® wt)
So the variance in the measurement of position in this satate after time t is (Az?) = 1—(1+
sin? wt) O

3.8.3. Consider a particle in one dimension bound to a fixed center by a d-function potential of the form

V(z) = —1pd(x), (vg Teal and positive).
Find the wave function and the binding energy of the ground state. re there excited bound states?
Solution:

Let the particle has total energy E and mass m. The wave function satisfies the schrodinger equation

n? d2
o da? (@) + E(z) = V(x)y(x) (3.10)
Since there is a delta function potential V(x) = —vgd(x) we can divide the wavefunction as two part
function If x # 0, V(x) = 0. Then the Schrodingers equation reduces to
d? 2mE

Thes is a well known second order ordinary differential equation whose solution is in the form
2mE _ [2mE
Y(z) = AeV 2 "+ Be V r2 "

The requirement that the wavefunction should be normalizable requires that lirjrzl Y(x) = 0. We can
Tr—r 00

evaluate this in two parts.

_ 2mE
if x < 0 Since the function e~ V #2 * blows up for
T — —00 it requires that B = 0 thus the solution
in the region = < 0 becomes

b (@) = AeV T

(3.12)

2mE
if £ > 0 Since the function eV 72 “ blows up for
T — 00 it requires that A = 0 thus the solution
in the region = < 0 becomes

_ 2mE

Yy(z) = Be V 2

x

(3.13)

The requirement that the wave function must be continuous everywhere (at = 0) requires that

lim ¢(z) = lim ¥(z),

z—0~ z—0+

= A=B

Integrating (3.10) from —e to € and taking the limit € — 0 we get

€ h2 d2
/,6%@

e—0 | 2m

(z)dx + /Z Ey(z)dr = /

€

vod () (x)dx

—€

iy | o (9,0 = ¥ (-6) | + Bl 640 = (-0 = (0

By the contunity requirement the middle terms goes to zero because at © = 0 9_(z) = 14 (x) This

simplifies to

h2
2m

[4/(0) = ¥ (0)] = —1o1(0)
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We can differentiate (3.13) ad (3.12) to obtain

h2 \/ 2mE \/ omE AR? [2mE 2Fh?
—|-A —A = = \/ = A
2m 12 h? ] 1o (0), =90 myy V- h? mug

So the complete solution becomes

ANV i r <0
P(x)=< A % ifx=0
0
Ae vV e ifz >0
The normalization condition can be used to calculate the value of A.

We can use the continuty requirement to evaluate the allowed energy

lim - (2) = lim . (z) = ¥(0)

z—0~
2
A= A=A 2ER
ml/o
[2ER2
= 1l=y/—
ml/o

2

mvg

=F= 572

2
So the ground state binding energy is 7;}:2“ . Since this energy is the only one that satisfies the scrodinger
equation, there is no other bound sate energy. O
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Mathematical Physics 11

4.1 Homework One

4.1.1. Use the general definition and properties of Fourier transforms to show the following

(a) If f(z) is periodic with period a then f(k) = 0, unless ka = 27n for integer n.
Solution:
We know by definition of fourier transform

F(ft) = [ - f®)e *dt = f(k) (Defition)

F(f(t—a)) = /_00 f(t —a)e”*tdt = e~k f(k) (Shifting property)

Since the function is periodic f(t) = f(¢t — a) and hence F(f(t)) = F(f(t — a)). So,

fk) = e ™ f(k); = (7™ —1)f(w) = 0;
Either f(k) =0 Or e~%® =1; = ka = 2mn. Which completes the proof.

(b) The Fourier transform of tf(t) is df(w)/dw.
Solution:

s @) =14 [ O; foe i = [ T2 ety at = / O; itf(t)e-tdt = —iF(tf(2))

dw oo Ow _

So the fourier transform of ¢ f(t) is F(tf(t)) = idf(w)/dw.

(¢) The Fourier transform of f(mt + ¢) is

Solution:

Making a change of variable mt + ¢ =p; t=2=5; dt = Ldp so e~ = giwe/me—iw/mp

m —m

elw

m

F(f(mt +c)) = / f(mt + c)e™ ™ dt = / f(p)em/me“%dpz

So the fourier transform of f(mt + ¢) is shown as required.

95

c/m ® iw/m
[ ey -

]

€

O

iwe/m

m
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4.1.2. Find the fourier sine transform f (w) of of the function f(t) = t~/2 and by differentiating with respect

to w find the differential equation satisfied by it. Hence show that the the sine transform of this function
is the function itself.

Solution:

By definition of sine transform f(w = 7 f(t)sin(wt)dt we have for f(t) =

(f( ) = d(i /"O %sin(wt)dt = /000 % <\1[ sin(wt ) dt = / V't cos(wt)dt

Integrating the RHS by parts we get

:o [T L) L ] - L

So the differential equation satisfied by the sine transform is

t=1/2,

L (fwy = viZmeD

L (7)) + 5o fw) =

This differntial equation can be solved as:

dfw) 1 o dfw) _ [ dw i) — 1 . Flo) = Aw—/
=gt = (@) =[5 =n(f@) = ghe) td = f) = A
But since f(t) = t~/? the value of f(w) = w™'/2, so from above expression we get.
flw)=Af(w)

Since we have the sine transform f(w) = Af(w) the sine transform fo this given function is the function
itself. g

. Prove the equality

[e%) 1 o a2
/ e 2% gin?atdt = — / — g dw
0 iy 0 4(1 + w
Solution:

It can be noticed that the LHS of the given equality is the square integral of function f(t) = e~ sin(at)
from 0 to oo. Since the lower limit is 0 we can take the fourier transform of this function w(t) f (¢) where
u(t) is the step function

at

7 _ —iwt 3y _ —at _: —iwt 34 a
f(LU) = / u(t)f(t)e g dt = /e @ Sln(at)e g dt = m
—00 0
The absolute value of the fourier transfom of the function is
- a a2
|F@)] = || =
a? + (a +iw) Vda* + wt

Now by use of Parseval’s theorem we have

/ lu(t)f(t)|?dt = / | f (w)[dw ( Parseval’s theorem)
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Substituting f(t) and f(w) noting that the function f(w) is even

oo o0

/6_2‘”‘ sin?(at)dt = = / e : dw = 1 / de
o Vaat + w? T 4a* + w?
0 0

— 00

o0

This completes the proof. O

4.1.4. By writing f(z) as an integral involving the J-function, (£ — x) and taking the laplace transform of
both sides show that the transform of the solution of the equation

dy
—_— = €T
=)
for which y and its first three derivatives vanish at x = 0 can be written as

e

s{d
1%

54 —

i = | T

Solution:
The function f(z) can be written as the integral of delta functions as

fa) = / (e - a) f()de

So the Laplace transform of the function is

fo= | OO{ I 6(§—x)f(£)d€}e‘“dx= / m{ I 6<£—x>e—“dx}f(£>d5: [ s

Taking the laplace transform of the given differential equation we get

e—s¢

st—1

4i6s) = ot = ) = | T f@ds = s) = / N

0

f(§)dg

Now for the solution this function can be expressed as the product of two functions as

[ s
s*—1J
~—_————

9(s) f(s)

3(s) = ——

The inverse laplace transform of f(s) is simply f(x) and the fourier transform of §(s) can be obtained
as

o) = (1) =7 (3 | o1~ ) ) = 3loimhlo) s

Now the laplace inverse of the product of the function is the convolution of inverses so
x 1 x . .
) = f(@) v gle) = [ 1o~ ) = 5 [ 1(€)lsinhta )  sinfa - Ol
0 0

Which completes the proof. O
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4.2 Homework Two

4.2.1.

4.2.2.

Solve the differential equation y”" — 4y’ +y = 0;y(0) = 0; ¢'(0) = 0 using the laplace transformation.
Solution:

Let Y(S) be the laplace transformation of y(x). Taking the laplace transformation of given differential
equation

L{y" -4y +y} = L{0}
s%Y (s) — y(0) — sy/(0) — 4sY (s) + 4y(0) + Y (s) =0

Substuting the given initial conditions y’(0) = 0; and y(0) = 0 gives

, N B 1 _ 1 1 V3
(Fods V=0 =Y = IS B s VB2 R

The laplace laplace transform is in the form m and the laplace inverse of this expression is

=L L V3 —ietsin
R b T BRI

This is the required solution for the differential equation. O

Using the convolution theorem establish the following result:

ot {(824‘9:2)2} - % (t cos(at) + isin(at))

Solution:
The given expression can be written as

52 S S

(2+a2)?  $2+a% s2+a

It is easily recognized that each part is the Laplace transform of cos(at). So the inverse Laplace
transform by convolution theorem is the convolution of cos(at) with itself

L7 {} = cos(at) * cos(at) = /0 cos(ax) cos(at — ax)dx
= /0/ cos(azx)(cos(at) cos(ax) + sin(at) sin(azx))dx

t 1 t
:cos(at)/ cos2(ax)dx+§sin(at)/ sin(2x)dx
0 0
cos(2az) ]’
2a 0

2cos?(at) 1 1 sin(at)
-~ 7 _—a t —
Rl C R

2ax + sin(2az)]"

= cos(at) { ” ]0 + %sin(aw [—

1 2 1
= thos(at) + Y’ sin(at) cos®(at) — 3 sin(at) -

- % (t cos(at) + isin(at)>

This is the required inverse fourier transform for the given expression. O
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4.2.3. Show that £{Ci(t)} = —5 In(1 + s?) where C(i) = — [ COS(“) du (The cosine integral).
Solution:
We know the differential under integral is

oo o(t)
& [ = peoo) S0 - ey 52+ [ LoD

u(t) u(t)

Considering f(t,u) = M,v(t) = R(as R— — o0) and u(t) =t we get

u

0

0
R
dCi(t)  cos(R)d cos(t) dt . 0 [ cos _ cos(t)
at R Jat t dt+Rh—I>noo/a w )=
t

= tCi'(t) = cos(t)

Taking the laplace transform of both sides and writing CI(s) = L {Ci(t)} we get

L{tCi(£)} = £ {cos(t)}

d s S
d ) S
— =5 5C1(8) = Cil0) = =

_d(sCI(s)) 5

ds s24+1

This expression is an ordinary differential equation which can be solved as
ds
— [ d(sCI = | ——
[awcren = [ 55
1
= —sCI(s) = 3 In(s*+1)
1 2
CI(S) = 72isln(5 —+ 1)

This is the required Laplace transform of Ci(s) = CI(s) = —5-In(s? + 1).

4.2.4. By performing the rational fraction decomposition, establish the following results:

(a) £71 {3(22111) } =1+ sin(¢) — cos(t)
Solution:
The partial fraction of

s+1 1 s—1 1 s 1

8(52+1)_;_52+1:§ 52+1+32+1

Now the inver se laplace transform is

- ) - ) foi)

=1 — cos(t) + sin(t)

Which is the required inverse laplace transform
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(b) £ ity )

Solution:
The partial fraction of this expression is
s+1 1 1 1 1 1 1

221t SPrsil £ £ Grloil-14d s (s +1/2) + (V/3/2)2

The inverse laplace transform is
s2(s2+s+1) s? V3 (s 4+ 1/2) + (V3/2)2

=t— ie*’f/2 sin @t
7 2

Which is the required inverse transform. (]

4.3 Homework Three

4.3.1. A cube made of material whose conductivity is k has its six faces the planes x = +a,y = +a and
z = +a, and contains no internal heat sources. Verify that the temperature distribution

u(z,y,2) = Acos(%) Sin(%) exp (_ 2,127;215)

obeys the appropirate diffusion equation. Across which faces is there heat flow? WHat is the direction
and the rate of heat flow at the point (%“, < a) at time t = a?/(k7?)?

Solution:

Since the expression is the product of sinusoids and exponentials, the derivatives are easy to calculate
and are by inspection

0%y 72 0%u 2 ou K2

=Ty o= 20 _ ol
Ox? a? Oy? a? ot a?
Checking this on the diffusion equation,

82u+82u_2772_1 7r2_16u
dr2 922 Ta?2 &k a? kOt

clearly satisfies it, Showing this function obeys the temperature diffucsion equation. The direction of

heat flow is given by the gradient of function. At t = %; u = Acos(zm/a)sin(zm/a)e™?

Vu = @i + @I% = Aﬂea_ (—sin(zm/a) sin(z7 /a)i + cos(z7/a) cos(zm/a)k)

6_2

Sy (— sin(7/4) sin(r)i + cos(w/4) cos(m) k)

Ae 21 A

in the direction of —k ]
a\@
4.3.2. Schrodinger’s equation for an non=reativistic particle ina constant potential region can be taken as

R (O Py o
o0x2  0y? 022 -

So the rate of heat flow is

2m ot
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(a) Find a solution, separable in the four independent variables, that can be written in the form of a
plane wave

Y(z,y,z,t) = Aexp(i(k.r — wt))

Using the relationships associated with de Broglie (p = kik) and Einstein (E = hw), show that the
separation constants must be such that

pi+p§+p§:2mE

Solution:
Lets assume the solution u(x,y, z,t) = XY ZT where X is purely function of z only and so on
with T being pure function of ¢. Substuting this product in the given PDE we get

h2

—Q—(X”YZT +XY"ZT + XY Z"T) =ihXY ZT'

m
Where X” and so on are total second derivative of their only parameters, x and so on. Dividing
thorough by the product XY ZT we obtain

ﬁ2 X" Y YAl T'
(2 2 ) e
< X"y Tz ) T

Since we assumed that each X,Y, Z, and T are independent of each other the only way the function
of independent variables can be equal is if they are each equal to a constant. Let the constant
that each side are equal be E. So we get.
h2 (Xl/ Y// Z//) T/

+—+ — ) =ih— = F (Separation Constant)

om\ X 'Y "z )T

Solving the ordinary differential equan in ¢ we get
T’ E dT E E - E
= —iﬁ; = - = —iﬁdt; = In(T) = figt; = T = The “*; Where w = 7

Also the LHS must equal same constant so

<X// Y// Z//) B 2mE

X + Y + Z h?
The LHS of this expression is sum of three independent functions and the RHS is a constant

void of any variables under considerations. The only way that can happen is if each independent
function is a constant

ﬂ__k2. LH__kQ. I
x y z
Substuting these back in the differential equation imply that they are related by the expression

—k2 — kg — k2 = 72’,’;2‘9. If we write p, = hk,,py = hky, and p, = hk,. Then we get

pi +p§ +p3 =2mFE (4.1)

Each ODE in X,Y and Z are well known Harmonic oscillator differential equations and the solution
of each are

X = Xpe =" YV =Yge MY, Z = Zge k2 (4.2)
Where each of Xg,Yy and Z; are constants. Combining all these in our final solution we get

w(z,y, z,t) = XY ZT = Xge ke . Yy~ . Ze7th== . Tpe it

— XOY'OZOToefikxmfikyyfikzzfiwt
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If we write A = XoY0Z0Ty, k= k@ +kyg+Fky2 and r = 2& + yg + =2 then the solution takes
the form

u(z,y,z,t) = Ae~ikr—wt) (4.3)
Which is the required solution of the given Schrodinger’s equation. |

(b) Obtain a different separable solution describing a particle confined to a box of side a (¢ must
vanish at the walls of the box). Show that the energy of the particle can only take quantized
values

h2m?

2ma?

(nz +my +n3)

where ng, ny, n, are integers.

Solution:

If the solution vanish at the wall of box then each solution given by (4.2) should vanish at the
wall. So this iimplies

0= Xoe_ikma 0= Yoe_ikya 0= Zoe_ikza
= kya = mny, kya = mn, = k,a=7n,
™ ™ ™
=ky = —2 ky = —% =k, =—2
a a

Substuting these values in (4.1) we get

_(ngﬂr)Q_ (nyﬂ'>2_(nz7r)2:_2mE. h2m?

= it =
a a 2’ 2ma?

o (ni—l—ni—i—ng):E

Which is the required solution |

4.3.3. Consider possible solutions of Laplaec’s equation inside a circular domain as follows

(a) Find the sollution in plane polar corrdinates p, ¢ that takes the value +1 for 0 < ¢ < 7 and the
value —1 for —m < ¢ < 0 where p = a.
Solution:
The general solution for the Laplace’s equation in plane polar coordinate system, where the solution
is finite at p =0 is

u(p, @) = D+ 3 (Cop")(Ay cosng + By sinng)

Since the given boundary condition is an odd function of phi, the even function term in the above
general solution must vanish so, D =0 and A,, = 0. The remaining general solution is

u(p,d) = 3 p"(Businng)

Where C,, is absorbed inside of B,, O

(b) For a point (z,y) on or inside the circle 22 4+ y? = a2, identify the angles o and 3 defined by

a:atan< Y >; and B:atan< L >
a+x a—x

Show that u(z,y) = (2/7)(a + B) is a solution of Laplace’s equation that satisfies the boundary
conditions given in (4.3.3a).




CHAPTER 4. MATHEMATICAL PHYSICS 11 103

Solution:
Using the trigonometric identity of inverse tangents we get

2 2 Yy Yy 2 2y
U(I,y) = ;(O&“”ﬁ) = ﬂ_(atan(m> +atan(a — J;)) = 7Tatan(a2_m2_y2>

To verify that w(z,y) satisfies the Laplace’s equation we have to show that % + 2277; = 0.
Calculating this expression

ou (-2 +@ra)’) g 2(@-n) (P atn) ) (v +a-27))
% r(p+@-27) (v+@+a?) % m (12 +(@—2?) (v + (a+2))
Similarly the second partial derivatives of each is

0%u day day 4y dxy

o2 2 ¥ - 2 -

r(2t @) w(@re-o?) w(@r@ro?) w(Pt@-o?)

9%u _ 8ay (—a* —2a%2® — 2a%y® + 32" + 22%% — o)

oy? 7 (a2 — 2ax + 22 + y2)? (a2 + 2azx + 22 + 12)°

On adding 2271; and giy’; we find that it is identically zero. So it satisfies the laplace’s equation.

On at the boundary a? = 22 4 y? and inside the boundary a? > 22 + y? so a? > z? + y2. On the
boundary

2y

2 2 T
u(w,y) = p atan< 3 g2 _ yg) = ;sgn(?y)g = sgn(y)

a

Where sgn(x) is the sign function. But on boundary y = asin ¢ where a is the radius and ¢ is the
azimuthal angle. The function sin ¢ is positive for 0 < ¢ < 7 and negative for —m < ¢ < 0, so

1 O<op<m

u(z,y) = sgn(y) = sgn(sin ¢) = {_1 —T<$<0

Thus the function satisfies Laplace’s equation and also the boundary condition. O

(c¢) Deduce a Fourier series expansion for the function
sin ¢ sin ¢
t —_— t —_—
* an(l + cosd)) e an(l — cosq5>
Solution:

Again by trigonometric identity

B sin ¢ sin ¢ B 2sin ¢ T ) T2 0<o<m
f(¢) atan(l_’_cos(b) +atan<1_cos¢) atan<1 _Sin2¢_cos2 ¢> - 2SgH(SlH¢) - {—77/2 T < d) <0

Let the fourier series of this function f(¢) be

f(o) = %) +Zancosn¢+bnsinn¢

This is a well known periodic square wave function. It is an odd function so a,, = 0 whose fourier
series is given by

m
= M = — 1— —1 n
a, =0; and b, n( (=)™



CHAPTER 4. MATHEMATICAL PHYSICS I1 104
So the required fouerier series of the function is
f(¢) = atan _siné + atan LIS i I(1 —(=1)")sinng
N 1+ coso 1—cos¢p/) n
This is the required fourier series of the function. O

4.3.4. A conducting spherical shell of radius a cut round its equator and the two halves connected to voltages
+V and —V. Show that an expression for the potential at the point (r,0, ¢) anywhere inside the two
hemispheres is

) (dn + 3) /7 2n+1
u(r,9,¢) = Z 22n+1n| (n+1)! (a) Pans1(cos0)

Solution:

For the spherical split spherical shell maintained at two differential potentials, let the potential every-
where inside the spherical shell be v. Since we know electric field is given by E = Vv and since for
Electric field V- E =0. We get V- E = V- Vv = V?v = 0. So the potential satisfies the Laplace’s
equation. If we suppose v as a function of r 6, ¢ in spherical coordinate system, then the solution to
Laplace’s equation in spherical coordinate system is given by

v(r,0,¢) = Z(Arl + Br~ D) (C cos me 4+ D sinm)(EP™(cos 0) + FQJ(cos 0))

lm

Where Q" (x) and P/™(x) are solution to the associated Legendre’s equations. And all other constants
are determined by boundary condition.

Since we have finite potential at at the center of sphere r = 0, the coefficient B = 0. Also since
we have spherical symmetry and the potential is single valued function m = 0. Also we have finite
potential at poles of sphere wchich correspond to 6 = {0, 7} and Q]*(1) diverges, we have F' = 0. Also
PP(z) = P/(x) where P)(x) are legendre polynomials. Owing to these boundary conditions the most
general solution is

v(r,0,¢) = ZAlrlPl(cos 0) (4.4)
1

Since there is no ¢ dependence, let the potential at surface be denoted by v, which is clearly jut function
of 6.

ve(0) = v(a,,9) = ZAlalPl(cos 0)
1

If we multiply both sides by Py (cosf) and and integrate with respect to d(cos#) from 0 to 1 using the
fact that Legendre’s polynomials are orthogonal, [ PyP; = & we get.

1 1
/Ova(H)Pk(COSG)d(COSO):/O (;AlalPl(cosﬁ)Pk(cos9)d(cos€)>
= 1 a' Py(cos cos 6)d(cos
= 30 et Pconoyputcostyitos))
= ZAlal§lk = Akak
1

So the coefficient Ay, is given by

1
Ay = —/0 Vg (6) Py (cos @)d(cos 0) (4.5)
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The recurrance relation of Legendre polynomials can be used to evaluate the integrals as
(2n+1)P, :P’I’IL+1( )= Py (2) (4.6)
Integrating (4.6) we get,
/ Po= —t (Pri(2) — Pau(e) + K
2n+1

Since Potential can have any arbitrary reference we can choose the integration constant to be K = 0.
Using this fact in (4.5) we get
1

Ay = ————
b ak(2n +1)

(4.7)

As given in the problen on the upper hemisphere the potential is +V and on the lowe hemisphere the
potential is —V'| It can be mathematically represented as

v (6) = Vv Tf2<9<§
-V ifs<f<nm

Substuting this in (4.5) we get and writing x = cos 6

V Pi(
a’“ / k(

= ([Pk+1( )~ P (@)]))
Vo1
T ak 2k 41
vV 1
T a2k +1

(Prt1(1) = Pe1(1) = Pret1(0) + Pr—1(0))
(Pr-1(0) = Pr11(0))

Since
(=1)"(2n)!
P,(0) = 22npl2 7’
0, otherwise

n even

For evn value of k, both £ — 1 and k£ + 1 are odd and hence P;_1(0) =0 and P;_1(0) = 0. Foe even £k,

Vv 1

-1
ak2/€+1(0 0 +1)=0

k=

But for odd value of k, k + 1 and k — 1 are even, hence both Pr_1(1) = P41(1) = 1 and writing
k=2n+1

4V 1 <<—1>2n<2<2n>! <—1>2<"+1)<2<2<n+1>>!)

aFdn +3\ 22@n)(2n)12  22C0HD)(2(n + 1))12
(4n!) _V (-D"(2n)!(4n + 3)
~ den ~ak 22ntlpl(n + 1)

Using this coefficient in (4.4) we get

)(dn +3) /7y 2k+1
(r6,¢) = Z 22n+1n| (n+1)! (E) Pan y1(cos0)

Which is the required potential function inside the spherical region. O
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4.4 Homework Four

4.4.1. A slice of biological material of thickness L is placed into a solution of a radioactive isotope of constant
concentration Cjy, at time ¢t = 0. For a later time ¢ find the concentration of radioactive ions at a depth
x inside one of its surfaces if the diffusion constant is .
Solution:
The diffusion equation with diffusion constant x is

0%u _10u
022 kOt
Using the separation of variable technique for the solution the solution can be written as u(z,t) =

X (x)T(t) where X and T are pure functions of x and ¢ respectively. Substituting this solution in the

solution we get
Xiﬂ _ EZ' = _)2
X kT

The constant is chosen to be a negative number so that the exponential solution is finite at infinite
time. The time part of solution is

1 2 dr 2 2 —kA%t
?:—5)\; = T = —kAdt; = InT =—-rXt+ K; =T(t)=De
For the other part qu = —xA? has the solution of the form

Asin(\jgag) + B(\;\Ex)

The general solution then becomes

A A 2
w(z,t) = |Asin| ——=z ) + Beos| ——=z | |e N "
After sufficient time has passed the concentration throughout the slab should be the concentration of
isotopes around it. But the above solution goes to 0 at ¢ = co. Since adding a constant to the above

solution is still the solution to the diffusion equation. We can add a constant to make it satisfy this
condition.

Since the concentration is constant at all times on either side of the slab, u(0,t) = u(L,t) = Cy and so
X(0)=X(L)=0. So
X(0)=Be M =0; =B=0

nm\/k
L

X(L):Asin(\j\EL) =0 é\j\EL:mr; = A=

Using these two facts we get our general solution to be
> . nm _ n2n2k +
u(z,t) = Cy +T;An sm(fac)e 2

At ¢t = 0 the concentration in the slab must be 0. So u(z,0) =0

0=u(z,0)=Cp+ i A, sin(%x); = —Cyp= i A, sin(%x)
n=1 n=1
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Again the coefficients A,, can be calculated by using the fact that {sin(nx)}, form an orthogonal set
of function for integer set of n. Integrating the above expression by multiplying by sin(%x) on both

sides gives
L mm L nmw mm
/0 —Co sin(Tm)dx = /0 zn:An sin<fx> sin(Tx)dx
1 A

L 2 14 (-1)™
= Am:L/ —Cosin<nzrx>dx:—LC’0{ +<)}
0

mm L

Using this the general solution becomes

20 1 _1 m 7n27r2nt
u@t)=Co— =2 # sin(“ e )
m

This gives the concentration of radioactive isotope inside the slab at all times. ]

4.4.2. Determine the electrostatic potential in an infinite cyinder split lengthwise in four parts and charged
as shown.
Solution:
Because the sides of cylindrical are conducting the potential is constant for u(a, ¢, z) where a is the
radius of cylinder. It follows that for all z, u(p, @) is the same. So the potential satisfies plane polar
form of laplaces equation which has the general solution

u(p,¢) = (Colnp+ Do) > (Ay cosne + By sinng)(Cp” + Dyp™")
Since we expect finite solution at p = 0, D,, = 0 otherwise it p™" = oo which won’t satisfy boundary
condition. By similar arguments C,, = 0 Also since at p = a the solution is an odd function which
causes Dy = 0 and A,, = 0. The general solution that is left is

u(pa ¢) = Z Bnpn sinng

Again the coefficients B,, can be calculated by using the fact that {sinn¢}, form an orthogonal set of
function for integer set of n. Integrating the above expression by multiplying by sin m¢ on both sides
gives

2m 27
/ u(a, ¢) sinmeodp = / Z A,a" sinng sin medg
0 (I
2
= Apa” i i d
; a /0 sin n¢ sin mede

2
= Z A7L@n§5mvz = Apa™T

27
= A, = b u(a, ) sinmeode

m
Ta 0
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4.4.3.

Since in the given problem w(a, ¢) has different values for different ¢ we get

/2 T —m/2 o
1
Am = — / V sinmedgp — / Vsinmodo + / Vsinmedgp — / V sin meod¢
Ta
0 /2 -7 —m/2

14 1 ™m T (=" 1 my (=1)" 1 mmy 1 Tm 1

=—Y—cos|—|]+————+ —cos|—|—— — —cos|—)—cos|— | — —

Ta™ m 2 m m m 2 m m 2 /m 2 m
%4 2(—1)m 4 ™m 2
=——K ——— — —cos|— ) +—
wam m m 2 m

_ V{l (, (—D)% (=)™ +1) — (=)™ + 1)}

Ta™ [ m
So the final solution becomes
\%4
u(p, @) = —{1- (-1)

mm

ME

(1™ = (1" + 1}(2) " sin(mo)

This gives the potential everywhere inside the cylinder. |

A heat-conducting cylindrical rod of length L is thermally isnulated over its lateral surface and its
ends are kept at zero temperature. the initial temperature of the rod is u(z) = wg. using the diffusion
equation

ou _ 0%
ot~ " o2

and the boundary conditions «(0,t) = u(L,t) = 0 and the initial condition u(x,0) = wug, obtain the
solution u(z,t) of the above equation.

Solution:

The general solution to the diffusion equation is

u(z,t) = (Asin(\z) + B cos(/\z))e*ﬁ“zt
Given initial condition u(0,t) =0
u(0,t) = e_’\2a2t(B cos(Ax)) =0

Since function has to be 0 at all times the only way this can happen for all ¢ is B = 0 Also the other
boundary condition is u(L,t) = 0 gives

u(L,t) = e Nty sin(AL) =0

Since A = 0 will give us the trivial solution 0 the only way this function can go to zero at all time is
sin(AL) = 0 which implies

sin(AL) = 0; = AL = nr; :»A:"%; (n>1)

Since the solution can be linear combination of all n so the solution is
i 2 2 nm
u(z,t) = ;Ane_”\ att sin(fx)

But since the initial condition is that the temperature of the rod is ug to begin with. The above solution
clearly goes to zero at t = 0 and z = 0. Adding a constant to a solution of differential equation is still
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4.4.4.

a valid solution, to satisfy this condition we can add a constant ug. The valid general solution then
becomes

o0
u(w,t) = up + Z AeNat Sin(%x)

n=1

At t = 0 the the solution reduces to

U($70) = Up + Z An SlH(%x), = Z A'n, Sln(%l’) = —Ug
n=1

n=1

Sine sin(nx) forms an orthogonal set of function for integer set of n. We can find A,, by integrating
above expression multiplied with sin max

/Ol —ug bln —x da: = / ZA” sm ) sin(%)dw
—ZA / sm( )sin(%x)dx
ZAnidnm = %Am

2 ! 2 1—(=1)™
5 A== (T de = —“0(1()>
! 0

Using this in the solution we get the final solution as

— (1—(-1)™
u(z,t) = ug — 2ug Z (Sn)) sin(%)e”\zazt
m=1

This gives the temperature as a function of position and time in the given cylindrical body. O

Consider the semi-infinite heat conducting medium defined by the region > 0, and arbitrary y and z.
Let it be initially at at 0 temperature and let its surface x = 0, have prescribed variation of temperature
u(0,t) = f(¢) for (¢ > 0). Show that the solution of the above diffusion equation can be written as

2
e 4a2(t )

u(z,t) = 2af/ t_T3/2f(T)d7'

Solution:
Since the temperature conduction of a material satisfies the diffusion equation, the diffusion equation
can be written as.
2, 0%u  Ou
- — = —
ox? Ot
Since the parameters of this problems are t — {0, 00} and  — {0, 00}, we can take the laplace transform
of the equation with respect to the variable ¢ which results in

7(1282@&(95 t)e Sdt = /Ooau(x t)e Stdt
9z S Joot
0

d2
] u(x, t)e Stdt = /875 (x,t)eSdt
0
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Assuming u(z,t) = g(t), the RHS of above expression is the laplace transform of derivative of g(t)
which is sG(t) — g(0) which can be written as

d—zU(:c s) = i(sU(;U s) —u(x,0))

de I - a2 ’ I

The term u(x,0) is the initial temperature of the material body under construction, since the body is
initially at 0 temperature u(z,0) = 0, using this and rearranging gives

d2

S
@ *U(Jf,S):O

U(z,s)— e

This is a very well known second order Ordinary Differential equation whose solution is of the form
Uz, s) = Ae™®Vs/@ 4 BeoVs/a

But since the material body is infinitely long in « > 0 the solution is finite at * = oo which implies
that B = 0. Also at the near end of the material z = 0 the temperature u(0,t) = f(t) is given. The
laplace transform of which is U(0, s) = F(s). So

U(0,s) = Ae’; = A=U(0,s) = F(s)
This reduces the solution in the form
Ul(z,s) = F(s)e‘x\/g/“

At this point the solution u(z,t) is the inverse laplace transform of U(z, s). If the expression is taken
as product of F(s) and e~*V5/% the solution is the convolution of inverses of these.

Looking at the result we expect, the inverse laplace transfrom must tbe

22

E—l{e—x\/g/a} — 3367?2?
2 /mat?

I checked this in sympy and got the following

So the inverse laplace transform of U(x, s) is

oo 22

u(z,t) = L7H(F(s)) *Lfl{efx\/g/a} :/ r e dZt—m
0

ayma (e

Since the integration is with respect to 7 the variable x is consant for integration which leads to

22
e 4a2(t )

u(z,t) = 2af/ t_T3/2f(T)d7'

Which is the required solution of the heat equation. O

4.5 Homework Five

4.5.1. A string of length [ is initially stretched straignt, its ends are fixed for all t. At ¢ = 0, its points are

given the velocity v(z) = (g?t’) s shown in the diagram. Determine the shape of string at time ¢,
=0

that is, find the displacement as a function of x and ¢ in the form of a series.
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In [1]:

import sympy as smp
from sympy.integrals import transforms as strn
smp.init_printing(J;

In [2]: x,t = smp.symbols('x, t' real=True, positive=True)
s = smp.symbols('s', complex=True)
d,k = smp.symbols('a, kappa', constant=True)
In [3]: | #this is the expected laplace transform of the function we need
fx = x/(2%a*smp. sqrtCsmp. pi))*smp. exp( -x**2/(4%a** 2%/ t*¥smp Rational(3,2) ; fx
out[37]: _
xXe w
—
24/ matz
In [4]: | #calculates the laplace transform of above function
strn.laplace_transform{fx, t,s)
Qut[4]: Vi L . T
(L’_T , =, 0<REA Il:ven1::1-:11-::3[@,:,1em (:[:h:}]ar_hfl2 (a},m)l < f)
vo(x) ;
[ 'h
' I l
2
Solution:
The motion of the string is guided by the wave equation which can be written as
Py _10%
0x? 2 0t?

If we suppose the solution y(z,t) = X (x)T(t) then substuting these and dividing thourgh by XT we
obtain

X// 1 T//

X 2T
The above solution is composed of two parts, each function of independent variables, the only way they
can be equal is if they are equal to constant, let the constant that they are equal be k2.

X//

>~ = k% = X = Asin(kz) + B cos(kz)
1 T//
2T = k?; = T = Dsin(kct) + E cos(kct)

So the solution to the differential equation becomes,
u(x,t) = [Asin(kz) + B cos(kx)][D cos(kcx) + E sin(kcz)]
But since the string is stationary at both ends. At x =0 and z = L
0 = Bcos(kx)[D cos(kct) + E sin(kct)]

The only way it can be zero for all ¢ is if B = 0. And also since the string has no displacement to begin
with u(x,0) = 0. The only way this can happen similarly is if D = 0. The solution then becomes

u(z,t) = Asin(kz) sin(kct)
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4.5.2.

Also since u(l,t) = 0 for all ¢, the only way this can happen is if k = . Since we have different

possible values of n for solution, the linear combination of all will be the most general solution
t) = Z A, Sin(nl—?rac) sin(?ct)
n
The velocity of the string at he begining is
ZA sm( ;i x) cos(nTﬂct); = (?}?) B =u/(z,0) = ; ?sin(?m)
The coeflicients A,, can be found by usual “Fourier Trick” as

2 ! nmw
A, = — '(z,0)sin( —=z )d
e ), u'(z, )bln( T x) x

Since the given velocity function is two part function we obtain A,, as
9 1/2 1
A, =— / o' (z,0) sin<@x>dm +/ u'(z,0) sin(n—wm)dx
nmc | Jo l 12 l
2 | (Y% 2h )
— / —xsin(n—ﬂx)der/ ——(x—=1) sin(nlx)dx
nmc 0 l L 1/2 l l

_ Sh m (77

——
m3ens 2

Substiting this back into the solution we have

u(zx,t) = i % sin (%) sin(?a@) sin(?ct)

This gives the position of every point in the string as a function of time. |

Consider the semi-infinite region y > 0. For > 0, the surface y = 0 is maintained at a temperature
Toe */!, fo x < 0. The surface y = 0 is insulated, so that no head flows out or in. Find the equilibrium
temperature at point (-, 0)

Solution:

The general differential equation of the temperature diffusion is

32l LT 0T 1 0
or2 | 9y kot

. But since at equilibrium the term %T = 0. The general differential equation becomes

2 2

@T(% y) + @T(x’y) =0 (4.8)

The temperature of the system T'(z,y) should go to zero as y — co. Also since the surface y = 0 is
insulated for < 0. The heat flow at for x < 0 is 6tT T,y |0* = 0. So by contunity of the function at

y = 0, the rate of change of temperature with y at y = 0™ should equal zero, so —g T(z,0) = 0. So the
Y
effective boundary condition becomes

e—r/l T
T(x,0) = f(x) = {vTO Ex i 8; 3%
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Taking the fourier transform of (4.8) with respect to the variable x we get

2

/m D e, y)eited +/Oo D e petdr = k2T () + STk y) = 0

Where T'(K,y) is the Fourier transform of T'(x,y) in variable . Since this is a well known differential
equation whose solution can be written as

T(k,y) = (k)e™™
Where ®(k) is an unknown function to be determined by the boundary conditions. The required
solution is the inverse Fourier transform is expression

1

* sz —ky
o / =MV () dk (4.9)

T(e,y) = F (T(k,y) =

Since we know the various parts at y = 0 substuting the anove function for y = 0 gives

T(x,0) = f(x) = % /_OO kP (1) du; = P(x) = /_00 f(x)e ™ dy (4.10)

We will substitue k& by vk2 + A% so that our solution will be in the limit A — 0.. Differentiating the
function with respect to y and setting y = 0 we get

;T( Y) = / e VNG (k) de = —/ —Vk2 + N2 VNG (k) d
Yy ~on

Setting y = 0 in above expression and taking fourier inverse transform of both sides gives

oo

VE2+X20(z) = / g(z)e ko dy (4.11)

—00

We can solve (4.10) and (4.11) with different parts of known f(x) and g(x). From (4.10) we get

/ f@) e Mot [ f@e = o @)+ [ T letae (12)
0 0

Unknown function

T 1
=o_ —_—— 4.1
e Sy (4.13)
Similarly solving (4.11) we get
VE2+XN0(z) =T, (2)+0 (4.14)
Form (4.12) and (4.14) we get
/T2 1 22
=VkZ+ A0 —I— k A
k—i/l
Dividing by vk — i\ on both sides we get
v To vV )
Vs e (k) — k) To vk +iA (4.15)

E—ix i k—ifl

Thie simplification this expression finally gives

e (1 —erf 7 —; zy)

T(x,y) = ToRe
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This is the solution for the temperature everywhere in the rod. At (—1,0) we get

T(—1,0) = Toe' (1 — erf(1))

This gives the temperature at the required point. O
P 0) — P4+1(0
4.5.3. (a) Deduce the relation P/, | — P/_; = (2] +1)P, and show that / P 11 Q)Z - 1l+1( ); =
1)
Solution:

The generating polynomial of the Legendre polynomial is

el = Amire 2xt+t2 Z

Taking the partial derivative of both sides of the expression with respect to variable x we get

=

0 1 0

— ) = — P (x)t" P (x

8$<\/1—2xt+t2) f%zn: ) (1 — 2at 4 2)*/? Z
This can be pulated to get

(1 — 2t + %) i P! (x)t" —t i P, (2)t

n=0

Z P (x Z 2xP! (2)t" + Z P, (x)t"t? = Z P, (z)t"t?

n=0 n=0

Comparing the coefficient of t**! on both sides we get
Ply(2) = 20P)(x) + Py (x) = Pula) (4.16)
Again if we differentiate the generating function with respect to ¢t and compare coefficients, we get
2n+1DzP,(z) = (n+ 1) Pogi(x) + nPp_1(x) (4.17)
If we differentiate the recurrence relation (4.17) we get
2n+1)P,(x) + (2n+ 1)zP(x) = (n + 1)Pyy1(z) + nP,_1(x) (4.18)
Also if we multiply (4.16) by (2n + 1) we get
(2n+1)P,,  (x) —2(2n+1)aP,(z) + (2n+ 1)P,_ (z) = (2n + 1) P, () (4.19)
If we subtract (4.18) from (4.19) we get
(20 +1)Po = Py (2) — Poy (a)

. This gives the required expression. The integral can be now written as

! P ('R —P (x) [Py —Pa(x) ! _ [Pya(1) = P1(1) = Pi11(0) + P_1(0)
1(w)dw = ar1 T 20+ 1 - 20+ 1
0 0

Since P,(1) = 1 for every n the expression simplifies to, and since there is P,_1(1) this will be 1
only if [ > 1, which allows us to write,

1 _ P1(0) — Py (0)
| A = G2 sy

This is te required integral of the Legendre polynomial in the given range. g
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(b) Show that / P(x)dx = ; (i1>1).

Solution:
From (4.5.3a) we can write

! _ P_1(0) = Pa(0)
/OPl(I)_ a1 (=D

We can the use (4.17) to evaluate P,11(0) which gives

(1 DPuis (@) = @n+ DaPale) = nPacs Pria(0) =~
Substuting this back we get
1
P1(0) — P41(0) 1 l 1
P, = P — P4 =
/O W) = 2 +1 o1 O+ 5P = s

Which gives the required expression for the integral.

115

O

4.5.4. A charge +2q is situated at the origin and charges of —¢q are situated at distances +a from it along
the polar axis. By relating it to the generating function for the Legendre polynomials, show that the

electrostatic potential ® at a point (r, 0, ¢) withe r > a is given by

47T€T Z( ) Paa(cosd).

®(r,0,9) =

Solution:

Let P be a a general point with coordinate (r, ) in a particular plane. Since the potential only depends
upon r and 6 and there is no ¢ dependence, we can cancluate it for a plane polar case, which works for

spherical polar as well.

Using the cosine law, the different quantities in the given diagram can be written as
2 _ .2 2 12 a a\?2
r; =r° —2racosf + a”; = (7> :172;C080+(;)

Since the generating function of legendre polynomial is

vV1—2xt+ VI—2zt+£2 Z

If we let = =t and cosf = x we get

11 1 1 — n
— == =- an(COSQ)<g)
— 2 9?2 TS r

(4.20)
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Similarly from ry from the diagram

2 2
ra =% — 2racos(m — 0) + a*; = (%) :1—|—2%c0s9+(%>

Similarly from above expression we get

1 1 1 1 a\™
- = ==Y P,(—cost)(- (4.21)
"2 r\/l—&-Q%cosO—I— (%)2 rr;) (T)

The potential any point P then becomes

R TR E NI Y

4dmeor 47T€0T1 dmegre  4dmegr

Substuting r; and 7o from (4.20) and (4.21) we get

G R WARRTION

Since P, (z) = (—1)"P,(—z) we get

V(r,0,¢) =

V(r,0,6) = morl ZP 0089< ) —i(—l)”Pn(cose)(j)n]

n=0 n=0

Which can be written as

V(r,0,¢) = 24 [1 = Z #Pn(cos ) <a>n]

4
TEQT = r

Since Py(z) = 1 for all x we can simplify the expression

V(0.6) = [Z LECU P eost) (j)"}

n=1

= 0 for odd n wec can write

471'6 r ip% cos ) ( )

Which is the required expression of the potential. O

_1\n
Since the expression 1+(2 )

V(r,0,¢) =

4.6 Homework Six

4.6.1. A string fixed at both ends and of length ! has a zero initial velocity and an initial
displacement as shown in the figure. Find the subsquesnt displacement of the string

. Yo(z)
as a function of x and t.
Solution:

The motion of the string is guided by the wave equation which can be written as T ]
4

0%y 1 0%y

a2 2ot
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If we suppose the solution y(z,t) = X (z)T(t) then substuting these and dividing thourgh by XT we
obtain

X// 1 T//

X T
The above solution is composed of two parts, each function of independent variables, the only way they
can be equal is if they are equal to constant, let the constant that they are equal be k2.

XI/

~ = k?; = X = Asin(kz) + B cos(kz)
1 T//
2T = k% = T = Dsin(kct) + E cos(kct)

So the solution to the differential equation becomes,
u(zx,t) = [Asin(kx) + B cos(kx)][D cos(kcx) + E sin(kcx)] (4.22)
But since the string is stationary at both ends. At x =0 and z = L
0 = Bcos(kx)[D cos(kct) + E sin(kct)]

The only way it can be zero for all ¢ is if B = 0. Substuting B = 0 in (4.22) and differentiating with
respect to t.

%u(z, t) = Asin(kz)[kce(—D sin(kcz) + E cos(kcx))); = u/(2,0) = 0 = Asin(kz)[Fkd]

The only way the above expression can be zero for all z is if E = 0. Also since u(l,t) = 0 for all ¢, the

only way this can happen is if & = *F. Since we have different possible values of n for solution, the

linear combination of all will be the most general solution
u(x,t) = zn: A, sin(ﬁnl—ﬂ:c) cos(?ct)
The shape of the string at he begining is given as a part function. So the function at ¢ = 0 then becomes
u(z,0) = ; A, sin(Tll—Wz)
The coeflicients A,, can be found by usual “Fourier Trick” as
2 l
A, = f/ u(zx,0) sin(ﬁx)dx
L Jo l
Since the given velocity function is two part function we obtain A,, as
o[ ri/4 1/2 !
A, == / u(z,0) sin(ﬂa:)dx—i—/ u'(x,0) sin(mx>daj+/ u(zx,0) sin(ﬂx)dx
/s ! /4 ! 12 !
2/1/4211 ,(mr )d +/l/2 4h l ,(mr )d
- —xsin| — —— |z — = )sin( —
lola:s Lxxl/4 Tlr—g)s T )de
8h . (TN . (TN
= (20 () —in ()
Substiting this back into the solution we have

u(z,t) = i wiﬁﬂ (2 sin (%) —sin (%)) sin(?z) sin(?ct)

n=0
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This gives the position of every point in the string as a function of time. O
4.6.2. A RLC circuit has the charge stored in capacitor ¢ which satisfies the differential equation as

d?q dg ¢
Li -_ —_— =
e TRy te=0

If the charge in the capacitor at time ¢ = 0 is ¢(0) = qo find the charge as a function of time.

Solution:
Let us assume that the laplace transform of ¢(t) is £{q(t)} = Q(s). Taking laplace transform on both

sides we get
L{s*Q(s) — 59(0) — ¢'(0)} + R{sQ(s) — q(0)} + %Q(S) =0

<LS2 + Rs+ é)Q(S) —(Ls+ R)q(0) — Lg'(0) =0

L(s+q’(0> + IZ) 7O+

Q(S>:L 2+E +L - 2+E _|_L " 2_;’_5 +i
ST o ST Ie AR TS

Since there is charge in the capacitor. The initial rate of discharge of capacitor is ¢’(0) = % The
denominator can be written as a complete square sum and the expression becomes

S

_|_
LR (LR LR L (L’
*Tor LC 412 *Tar LC ~ 4L?

Writing % =« and (% — %) = w? we get

Q(s) =

S+« Jra w
(s+a)24+w? w(s+a)?+w?

Qs) =
The inverse lapalace transform gives
q(t) =e (sin(wt) + %Cos(wt))

This is the required charge as a function of time in the capacitor. O

4.6.3. Solve the diffusion equation aa—;q(x, t) = %q(m, t) for the initial condition. ¢(z,0) = nge~1*
Solution:

Oq(x,t)  Oq(x,t)

0x? ot

Taking fourier transform in variable z on both sides

[e’e) 32

e @Q(”’t) - [m gqu‘,t); = —k*Q(k,t) = Q1)

This is a first order differential equation in ¢ whicch has a solution

Q(k,t) = Age *’t
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Now given the boundary condition ¢(z,0) = e~#l we can calculate the contant Ay by

Q(k,o) = ‘F(q(x70)) _ /:’O eialﬂeiikmdﬂf

— / eamefzk:zdx + / efaxefzkzdl,
—o0o0 0

0 o)
_ / e(afik)xdl, + / 67(a+ik)ajd£ﬂ
—0o0 0

0 o]
_ n a—ik _ o e—ac(oz—ik)
a —ik e Tla+ik) 0
Ny o
T a—ik T atik
_ 2a
a2+ k?

So the solution in & space becomes Q(k,t) = jﬁj,‘; This then can be used to calculate the solution as

_ 2nga 2 1 [ 2nga noo 0o ikz—k’t
t e _F 1 Kkt _ / ik k tdk 7dkj
Q(Ia ) <OZ2 T ]{326 9 . a2 T ]{726 - . a2 n k2

This gives the gemeral solution. ]

4.7 Homework Seven

4.7.1. Show that

) l

|’I" —'r'| Z Z (TlJrl)2l+1Ylm(0>¢)*Ylm(9/a¢/)

=0 m=—1

Solution:
Let the angle between the vectors v’ and r be . Also let |r — r’| = r1. Then by cosine law wwe have

r? =1 — 2r'r cosy + 1%

Which can be rearranged to get

1 11 A= !
; z(—2rcosv+1) :T;Pl(cosq/)<r>

|r—r|:r1 r\r

From the spherical harmonics addition theorem we can write

l

4
Rleosy) = grig 3 V(0.0 N0 6)

Substuting this in the above expression we get
e !

1 1 AR com
7] Z() IR U
m=—I

=0

— = : Ir,l 47T Yme *Ym 0/ /
-2 Z(H)M (0.0) YO )
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Clearly this series converses only if r > 7/ if instead ' > r in the the expression can be rewritten as

1 1 —-1/2
WZE T(1—2—cosv—|— ) —ZPlcos'y( )

Using the spherical harmonics addition relation leads to

1 1 & 1 4 !
T3 (%) g 2 Y000, e)

1=0 m——
') l
=3 Y (a0 )
=0 m=-1
These are the required expressions O

4.7.2. By choosing a suitable form for h in the generating function

G(z,h)—exp[ (h—)} Z I

n=—oo

show that the integral representation of the bessel functions of the first kind are given, for integral m

by
o
Jam(2) = 5 cos(z cos ) cos(2m@)db; m > 1,
™ Jo
(_1) 2 )
Jam+1(2) = 5 sin(z cos 6) cos((2m + 1)0)do m > 0.
T Jo
Solution:

Let h = ie®®. With this choice of h we get h — 1/h = ie? +ie”® = 2icosf. This siimplifies the
generating function integral to

eizcos& — Z Jn(z)(ze 0

cos(z cosf) + isin(zcosf) = Z Jn(2)i™(cos + isin6)"
= Z i" Ty (2) cosnf 4 i" 1T, (2) sin nd

Since " is real for even n and i"*! is real for odd n. The real part of the expression on RHS is

Z Jomi®™ cos(2mb) + Jop 112" 2 sin((2m + 1)6) = Z Jom (—=1)™ cos(2mb) + Jop 1 (—1)" L sin((2m + 1)6)
Thus equating real part on both sides gives

cos(zcosf) = Y Jam(—1)" cos(2mb) + Jam 41 (—1)" " sin((2m + 1)0)

m=—0o0
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Since we know that the set {sinnf}, and {cosnf}, form orthogonal set of functions we can find the
expression Ja,, by usual “Fourier Trick” as

2
/cos(z cos 6) cos(2r0)do = / ( Z Jom (—1)™ c08(2r0) + Jam1(—1)™ T sin((2m + 1)9)) cos 2rfdf
0 m=—00

o 2w 27

Z / Jam (—=1)™ cos(2mB) cos 2r0df + / Jom1(—=1)" L sin((2m + 1)6) cos 2r0do

m==00 \g 0

oo

= Z (_1)mJ277L27T57rLT+0

= (=1)"Jor(2)2m
Rearraning the expression gives since ﬁ =(=1)"

2m

Jor(2) = (_er)T /cos(zcos@) cos(2r0)do
0

Similarly equating the imaginary part gives

sin(z cos 6) Z Jom (—1)" sin(2m8) + Jopmi1(—1)"" cos((2m + 1)6)

m=—o0
The usual orthogonality gives

2m

Jort1(z) = (,27137" /sin(z cos @) cos((2r + 1)6)do

0

These concludes the rquirement. O

4.7.3. Find the potential distribution in a hollow conducting cylinder of radius R and length [. The two ends
are closed by conducting plates. One end of the plate and the cylindrical wall are held at potential
® = 0. The other end plate is insulated form the ylindre and held ate potential ® = ¢
Solution:

Since there is no charge source inside the cylinder, the potential in a chargeless region follows the
lapalces equation V2® = 0. Using the usual culindrical coordinate system for the problem the general
solution of the Laplaces equation in cylindrical solution is given by

®(p, ¢, z) = [Ady(kp) + BY;,(kp)][C cosme + D sinme] [Ee™** + Fet?|

Since the potential is finite at p = 0 at the axis of cylinder, the coefficient B = 0 because Y,,,(0) = —cc.
Since the potential is finite in that region that has to be the case. Also since there is azimuthal symmetry
the value of m = 0. The general solution then becomes

B(p. 6,2) = Ado(lep) [Ee ™ + Fe ]

Since the potential is 0 at z = 0 in the bottom end of cylinder. F + F = 0; E = —F. Absorbing
2F into A we get

D(p, 6, 2) = Ado(kp) sinh(k2)
Also at the wall of the cylinder p = a the potential is zero so

= ®(a, ¢, z) = AJy(ka)sinh(kz)
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4.7.4.

The only way this expression can be zero for all z is if Jo(ka) = 0. Which means ka should be the zero
of bessel function. Since there are infinite zeros of bessel functions let them be denoted by {a;};=,.
This means ka = a;;= k; = % So the general solution becomes

D(p, P, 2) ZA Jo( )smh(a )

The coefficient A; is given by

2 @ (67
Ai_Jf(ai)sinh(O;il)/o p<1>(p7¢,l)Jo(;p>dp

Since ®(p, ¢,1) = ¢g this integral is becomes

2¢0 “ Q;
A =__ %0 &
" J?(a;)sinh(2) /0 pJO( a ”)dp
_ 2¢0 |:J1(04i):|
J#(cv;) sinh (%l) Q@
_ 2¢0
a;Jq(ay) Sinh(%l)

Substuting this back gives the required general solution

> . .
(o, ¢:2) Z a; J1 (o Slnh(all) JO(%p) sinh(%z)

=0

This gives the potential everywhere inside the cylinder. O

Show from its definition, that the Bessel function of second kind, and of integer order v can be written
as

aJM(Z) _ (_1)u 8J@Z(Z>:|

Using the explicit series expression for J,(z), show that 0J,,(z)/0u can be written as

Ju(z )1n<2) +g(v,2)

and deduce that Y, (z) can be expressed as

Y, (2) = %Ju(z) m(f

2) + h(v, z)

Where h(v, z) lik g(v, z), is a power series in z.
Solution:
The definition of the bessel function of second kind is

Y,(2) = lim cos uﬂJM.(z) + J_,(2)
p—v sin pm

Using L Hopitals rule to evaluate this limit we get

— si Ju(z) + J(z) — (=1)*J-
¥,(2) = lim msinpmJ,(2) + cos pmJ) (2) — (=1)*J ,(2)
= COS um
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Since at integer values of v the value cosvm = 1 and sinvm = 0 we get

0,(2) 1)U6J_u<z>}

1
Y, (2) = = | 2222
O =7 |2 -
For non-integer v the power series representation of the Bessel function is
S (D) e
0= S )
w(2) ;T!P(T—HH—I) 2

Taking derivative with respect to u we get

an;EZ) _ ;M(;)M-ﬂ ln(g) +;( T%IZZIET(:Z/—T-J;)D (2>M+2r

op

e —1)r u+2r e 7“]_"/ 1 n+2r
() ) e ()
2) = rll(r+p+1) ~ T'F2r—|—u+l) 2
Ju(2) g(p,z)

= ln(%) Ju(z) + g9, 2)

Since J_,(z) = (—1)*J,(2z). This expression can be reused to calculate the derivative of J_,. Multi-
plying both sides of this expression by (—1)* we get
9J_p(2)

5 = (1 (5)u(e) + (1) gl 2)

Substuting this back in the expression for the bessel function of second kind we get

1 z z
V() =~ [In(5) Ju2) + g(,2) + (CDM D () Ju(2) + (1 g0 2)]

1 z z 1 y

= —[m(3) ) + () 1()] + <l 2) + (~1)"g(w, 2)

h(v,z)

2 z

=2 1n(§)JV(z) + h(v, 2)

This gives the requried expression for Bessel function of second kind for integer order. O

4.8 Homework Eight
4.8.1. Consider a damped harmonic oscillator governed by the equation

t
i‘:+2Ax‘+w§x:@
m

Where A2 — w2 (overdamped case). Suppose the external force f(t) is zero for t < 0. Develop the
Green’s functio and write the solution z(t) satisfying conditions z(0) = ¢(0) = 0.

Solution:

Let G(t,€) be the solution to the differential equatation with the inhomogenous part replaced by delta
function 6(t — £). This can be written as

G(t,€) + 2XG(t, &) + WiG(t, &) = 6(t — &) (4.23)
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If t # £ the delta function is zero so the solution for this differential equation for ¢t < £ is
G_(t,€) = e (Aet\/”—w% + Be 1V ”—wﬁ) (4.24)

Given initial condition x(0) = 0. It implies that G(0, &) = 0, Susbtuting this in the above solution we
get

G_(0,§)=A+B=0; =B=-4A

Also since (0) = 0, we must have G(0,¢) = 0. Differentiating (4.24) and substuting ¢t = 0 we get

G-(0,6) = - (4e VIR = 4V ) o (a3 VI g eV
G_(0,9) =24/ —wf=0;  =4=0

So the solution for the case t < ¢ is trivially G(¢,£) = 0. For ¢t > & the solution similarly is
G (t,€) = e N (ce V- De’tm) (4.25)
By the contunity requirement of Green’s function solution at the vicinity of t ie in ¢t =& + ¢
lim G(¢ — ,€) = lim G(€ + €, €)
G (t,€) = G (t,8) = ¢ (CesVA0 4 pe eVt
= 0= (C’eg\/m + De‘gm>

= C = —De 2VN'—% (4.26)

Also integrating (4.23) in the vicinity of ¢ i.e., for t = £ £ € in the limit € — 0 we get

—f4e E+e . E+e E+te
e +/ 2>\G(t,f)dt+/ w%G(t,f)dt] :/ St — &)dt

t=¢—e —€ —e —€

hm [ (t,¢)

G_(6,6) = G1(&6) +2NG-(&,6) — G (9] + %[Gi(fﬁ) -GL(9)] =1 (4.27)

Since the Greens function should be continuous at the vicinity of t = £, we have G4 (£,§) = G_(,§)
this renders two middle difference in above expression to be zero leaving us with only the difference
of derivative. Since G_(t,§) is identically zero its derivative is zero. But the derivative of G (¢,&) at
t=¢1is

G(6,8) =-A (Aeém + Be ¢V )‘27‘”(%) e M 4 (A\/)\2 — W 208VAT—wi B2 wQefév A?—wg >
Substuting C' from (4.26) we get

G(§8) = QDMe”Eef\/m

Substuting G_(&,€¢) = 0 and G (£, €) from above in (4.27) we get

2D\ — e VIR 1 s po Loy

2 _
A2 —w?
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Using this in (4.26) we get

c—__ L eor/Aa)

VA2 — w2
Thus G4 (t, £) becomes
G+ﬁ£)=gfﬁji—f(ﬁ OVIZ—wF _ —ﬂ—a¢ﬁ:@)
, A2 —wd

So the rquired Green’s function is

0 ift<¢

G(t,§) = -9 =N _ —(t=6)/32 =} .
m( e~ ) ift >¢

So the soution of the differential equation becomes

z t)z/E a6l

This is the required solution of the differential equation. 0

4.8.2. We are to solve y"" — k%y = f(x)(0 < x < L) subject to the boundary conditions y(0) = y(L) = 0.

(a) Find Green’s function by direct construction.
Solution:

2
TY 2y — fa)

dx?

for 0 < x <, with y(0) = y(I) = 0.

The green’s function solution to non homogenous differential equation Ly = f(z) is a solution
to homogenous part of the differential equation with the source part replaced as delta function
Ly = 6(x—&). The ontained solution is G(z,§), i.e., LG(z, &) = §(x—&). This solution corresponds
to the homogenous part only as it is independent of any source term f(z).

d—ZG(x &) — =d(x —&); with G(0,£) =0; and G([,§) =0forall0 <& <1  (4.28)

Since delta function 6(x — &) is zero everywhere except = £ we can find solution for two regions
x < & and z > ¢ For x < & let the solution to Ly = 0 be y1(z) and for = > £ be y(z) then

i (2) = KPyi(x) = 0; for o < & yy(x) — KPya(x) = 0; for x> ¢
These are well known second order ODES whose solution are
y1(z) = Asinh kx 4+ B cosh kx; ya2(z) = C'sinh kxz + D cosh kx

By the boundary condition y;(0) = 0 and y3(I) = 0. These immediately imply that B = 0. Also
since the soution to the differential equation must be continuous y1(§) = y2(£). Integrating Eq.
(4.28) in the vicinity of & we get

M: 8z —&)dz; = y'(€1) —y'(E-) =1
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From three different conditions, (i) contunity at &, (ii) y2(!) = 0 and (iii) (&) — y4(§) = 1 we get
following three linear equations. Using there parameters we get.

Ck cosh k€ + Dksinh k€ — Aksinh k€ =1
C'sinh k€ + D cosh k€ — Asinh k€ =0
C'sinh kl + D coshkl =0

Which can be written in the matrix form and solved as.

kcosh (k€) ksinh (k€) —k cosh (k€)] [C 1 c ktn}ni}%
sinh (k)  cosh(k€) —sinh (k&) | |D| = [0 = |D| = 1 sinh (k¢)
sinh (k) cosh (kl) 0 al o) LAl 5 f;g;fg;gg ~ cosh (k) )
Giving
sinh (k€) 1 . 1 [ sinh (k€)
= SV Do Csinh(ke);, A= (WS oeh
@ Ftanh (k1) g Sinh (K k <tanh () ~ )

So the required function is

e (@ =1 (E2RGS — cosh (k) ) sinh ko = — bk =m0 fr<e o
(117, 5) - __ sinh (ka) sinh (k€) 1 . __ sinh k€sinh k(L—x) . ( : )
yQ(SC) = W — Esmh (l{:g) cosh (kl’) =~ ksmhkl if x > g

Eq.(4.29) gives the Green’s function whein can be used to find the solution to the differential

equation
0= [ G

The solution to the original inhomogenous differential equation can is given by the above expres-
sion in terms of Green’s function. g

Solave the equation G” — k2G = §(x — &) by the Fourier sine series method. Can you show that
the series obtained for G(z, &) is equivalent to the solution found under (a).

Solution:

Let sine series of solution G be

2,2
G = ZA” sin(%m); G" = ZA” — nLZ sin(%x)
Substuting these back in the differential equation we get

Z A,L(E—kQ)—sin( ):J(x—g)

Again let the fourier sine series of delta function be

= Z B, sin(%x)

The coefficient B,, can be found as
/5(3: —&) sin mx) dx = /Z B, sin(%x) sin(%x) dx
sm(—{) ZB Omn = Bm £

= B, = %sin(%f)
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Substuting this back into the differential equation we get
Z A, (—7k2>fsm(%x) =46z —¢ Z—Sm< )sin(%m)

Comparing the coefficients we get

nmw . nmw 2

A (K — 7 —)— = Zsin(n%§>;:> A, = m@n<?f)

Thus the Green’s function becomes
. /nT 2 . o/nm . /nm
G = ;An Sln(fl') = ;(kQ—anr)mrSln(Lg) Sln(f.%)

Which is the required sine series of differential equation. The fourier series of solution in part (a)
is exactly this. O

4.8.3. Show that the Green’s function designed to solve the DE

4 (a8) (- )= 0 i

subject to y(0) < oo and y(a) = 0 reads

~—

2 U ¥on (b0) T k0¥ KO 7 () (3 < €
(z.€) )Y 63 ()Y >
g el harato 1 1) (22 )

Also consider the case J,,(ka) = 0. Show that if k& # 0, then G(z,&) does not exist, but &k = 0 G(z,¢)
does exist, although the above form is not applicable. Evaluate G(x, &) in this case.

Solution:

Let G(z,€) be the solution of the differential equation with the inhomogenous function by a delta
function 6(z — &). If  # £ then the delta function is zero and the differential equation is a bessel
differential equation. So the solution of bessel differential equation of order m are is

G(z,8) = Ady(kz) + BY,, (kx).

We can divide the solution into two parts with < £ and x > &.

Given the boundary condition the solution is finite for = 0, the coefficient of bessel function of second
kind Y, (kx) is zero because it blows up at x = 0.

G (2,8) =) = Adm(kz); (2 <§)
For z > £, the solution ys(z) can is
G (z,§) = y2(x) = CJpm(kx) + DY (kz);  (z2€)
Since the given initial condition is y2(a) = 0 we get

Im(ka)

b= _CYm(ka)

So the kernel of solution is begin ys(z) = Jy, (kz) + ¢V (kx) where ¢ = —%.
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The greens function solution is

~—

y1(x)y2 (&) (:C <¢
_Joewe (@<=
G(z,€) = {zﬁ((g)yz((w)) (> ¢ (4.31)
POWE

8
Y

~—

Where W(¢) = [y1(z)ys(x) — y1 (2)y2(x)]z=¢ is the wronskian of two independent solution to two parts
in the range [a, b] divided by the point £ € [a, ]

Now we have to calculate the wronskian W(y;(z), y2(z)) which can be evaluated as

W(yr(2), y2(2)) = W(Im (kx), Jm (k) + ¢¥m (kz))

W (kz), Jm (kz)) + ¢W (I (kz), Yin (k)
:O+q%

Thus W(¢) = i—'é. We have our p(§) = £. Thus,

v1(@)y2(§) _ I (k) [Jm (KE) + ¢V (k)] _ T (kz) ™ (S (k)Y (ka) — Jn (ka) Yo (k)]

p(OW(E) ¢ X - 2 T (ka)
v2(2)y1€) _ [Jm (k) + gV (k)| Jin (kE) _ 7 [ (k) Yin(ka) = Jin (k@)Y (k)] (k)
p(EW(E) £ 2 T (ka) m

Using this in green function solution in (4.31) we obtain.

7 [Jm (k&) Yo (ka) = Jm (ka) Yo (KE)]
Im(kz) (<€
(2,6) =S 2 1, (k)i (ka)( J)(ka) - (k)] -
z Im (k) (x> &)

m

~—

Which is the required Green’s function solution. O

4.8.4. Consider th eboundary-value problem

d2y

Vet wo=0 L

— =0 (0<z<L).
dx O<z<li)

(a) Find the normalized eigenfunctions of the oeprator for teh given boybdary conditions
Solution:

Let g(z) be the eigen function of the operator with —\? as eigen value thus

d?g(x)

Az —N?g(z)

We know the solution of this differential equation are
g(x) =sin(Ax); ¢'(x) = Acos(Az); ¢'(L) =0 = Acos(AL); = AL =(2n+ 1)%

Thus the eigenfunctions become

g(x)zsin<(2n221)ﬂx>; e (W)Q

This is is the eigenvalue and eigenfunction of the given operator subject to given boundary condi-
tion (|
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(b) Write bilinear formula for Green’s function
Solution:
The bilinear form is

() g sin (2T 40 ) gip ((Zrtbm e
g - 0 - R

This is the required bilinear form O



Chapter 5

The Standard Model

5.1 Homework One

5.1.1. (SMIN 1.1) Consider a vector field in three-dimensional cartesian space:

, Y
u' = 2% +2
3

(a) Compute the components of 9;u’.
(b) Compute 9;u’
(c) Compute 9;07u’.

Solution:
Since for three-dimensional cartesian space the indices run from 1 through 3,

A out 0w Oud y 2x 0
oju’ = Oul  Ou? Oyud z 0 0
83u1 33u2 831,63 0 0 0

Ot = Ot + 0ou® +05ud =y +0+0=1y

Since for cartesian space the metric elements are

.. 1 0 0 . ..
0; = (Baz gy %> ) gij = g7=1{0 1 0 = & =g"0; =
0 0 1

) 52 52 52 ) o ) LY
¢3j3J:7+7+7zv = 0;0'u' =V |22 +2 | =

w
~
o oW FleSloFle

Each of the components are thus calculated.

5.1.2. (SMIN 1.4) Express the following quantities in naural units, in the form (# GeV)".

(a) The current energy density of universe : ~ 1 x 10726kg/m?3.
(b) 1 angstrom
(¢) 1 nanosecond

130
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(d) 1 gigaparsec ~ 3 x 10%°m
(e) The luminosity of the sun ~ 4 x 102

Solution:

4

1%k 2 2 1 4 5/4p3/4
-9 ¢ J3 = cJ 3| = ERT =R GeV | = CiGeV
m?3 (Ls) (1Ly-1) e x 107 e x 107

c

1% 10-26k 1 % 10-26/45/4p3/4 4
X 10 kg _ (11077 c GeV) = (1.01 x 10-11GeV )
e x 109

m3

IR . ( ch -
-1

1 x 1010/
1A =1x10""m = <:><0109606V> = (1.24 x 107°GeV) ™!

1 x 10~2%¢ch

1Gpc ~ 3 x 10%m =
pesox Am (3~e><109

—1
GeV) = (413 x 1074 GeV) ™

1., [ & - B o [1x10° - T

W, [ B2 ’

2

2611/271/2
4% 10%) "k GeV) — (3.21 x 10°GeV)?

e x 109

Lo ~ 4 x 10%W = ((

5.1.3. (SMIN 1.6) Consider a 4-vector

AH

O O W

(a) Compute A- A= AFA,.
Solution:
For minkowski space the metric is

1 0 0 0
, 0 -1 0 0 ,
9" =g = 0 0 -1 0 = A, =guA"=(2 -3 0 0 0)
0 0 0o -1

A-A=APA, =224 (3)-(=3)=—5

Thus the dot product is —5. g



CHAPTER 5. THE STANDARD MODEL 132

(b)

What are the components of A* if you rotate the coordinate frame around the z-axis through an
angle 0 = 7,7

Solution:
The transformation matrix for rotation around z-axis at an angle 6 = % is
1 0 0 0 1 0 0 O 9
Ao [0 cosTh siny 0 |0 Y V0 AR piar— | 32
“ 0 —sin; cos™; 0 0 V3% Y% 0 v —3v/3/2
0 0 0 1 0 0 0 1 0
These are the required transformed components. O
For your answer in part (5.1.3b), verify that A*Aj is the same as in part (5.1.3a).
Solution:
1 0 0 o0 2
o - 0 -1 0 O 0o 5 -3/2
AU _ AR AD _ . T e _AY —
9T =N =g g 1 o | 9T A = 0w A= 352
0 0 0 -1 0
- 3 3 V3 V3 9 27
Ap =224, () + (=8V9) 48V =4 - T - T =5
The inner product is —5 as required. |

What are the components A* if you boost the frame (from (5.1.3a)) a speed v = 0.6 in x-direction?
Solution:

For v = 0.6 = 3/5 the “gamma factor” is v = 1/4/1 — .62 = 1.25 = 5/4 and thus vy = 0.75 = 3/4
The transformation matrix under this boost is

vy vy 0 0 5/4 3/4 0 0 19/4
i_|vy v 0 O] _[3/4 5/4 0 0 i @ v 21/4
A= 0 0 1 0] O 0 1 0 A Ay A = 0
0 0 01 0 0 0 1 0
which are the required components under boost. O

For your answer in part (5.1.3d), verify that A*Aj is the same as in part (5.1.3a).
Solution:
Since the Minkowski metric is invariant under boost, the transformed metric is gps = g

1 0 0 0 19/4
0 -1 0 0 .| —21/4 .

so= o o oo | Aememed= | Tl A= () =
0 0 0 -1 0

The inner product is —5 as in (5.1.3a). O

5.1.4. (SMIN 1.10) Consider a scalar field

(a)
(b)
()

o(x) = 2t* — 322

Compute the components of 9,,¢.
Compute the components of 0 ¢.
Compute 0,0"¢. (This operation is the d’Alembertian operator).
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Solution:
1%} 1%}
% 2t % 2t
o) = | % [o) = | 07| =g =| % | =@ =T
b b
J J
= 0 —& 0
The operator
BN (&
¢ 7
9 _0 2 2 2 2 2
90" = | % o (82628232)32 2
@ —@ ot or Qy 0z ot
0z 9z
0? 9
Thus the d’Alembertian operator on the given scalar function ¢(x) is 10. g

5.1.5. (SMIN 1.13) An excited hydrogen atom emits a 10.2eV Lyman—a« photon.

(a) What is the momentum of the photon? (Express in natural units.)

(b) As Newton’s third law remains in force, what is the kinetic energy of the recoiling ground state
hydrogen atom?

(c) What is the recoil speed of proton.

Solution:
For a photon E = p so the momentum of the photon is 10.2eV.

If Newton’s law remain ins force, then the recoiling ground state atom has the same momentum as the
outgoing photon. So the recoiling momentum of ground state atom is 10.2eV.

Mass of proton is 9.38 x 10%¢V, since the mass of electron is negligible coompared to proton let us
assume the proton carries all the momentum so,

v P 1 1 _8
=ymyr = @ —=— = v= = =1.08 x 107° = 3.26m/s
=7 Vi—v2 m )2 \/1 9.38x108 ) 2 /
1+ (;) + ( 10.2 )
So the recoil speed of proton is 1.08 x 1078 = 3.26m/s. O

5.2 Homework Two

5.2.1. (SMIN 2.3) Consider two particles of equal mass m connected by a spring of constant k& and confined
tomove in one dimension. The entire ssytem moves without friction. At equilibrium the spring has
length L.

(a) Write down the Lagrangian of this system as a function of 21 and x5 and their derivatives. Assume
To > I7.
Solution:
The kinetic energy of each mass is %mx’f and for the second mass is %mafgz. The total compression
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in the spring is zo — 21 — L so the total potential energy in the spring is V = %k (xg — a1 — L)Z.
So the lagrangian of the system becomes

1 . 1 1
L= imx? + gmxg . ik(xg —ay—L)?
This is the required Lagrngian. O
(b) Write the Euler-Lagrange equation for this system.

Solution:

d /oL oL

- _ = — — T = k — — L

dt <8x1) 8.231 M (xQ e )

d /oL oL

— =) === = mi,=—k —x1— L

dt (8$2) 81’2 Lz (IQ o )
These are the required Euler-Lagrange equation of the system. |

(c) Make the change of variables

1
A=xy—x1— L X:§(m2+x2)

Write the Lagrangian in these new variables.
Solution:

Eliminating x; and x5 between the two transformation variables A and X we get

To—x1=A+L 1 +x1 =2X

1 1.
1 S
Using these variables the lagrangian becomes
1 (o 1.\ 1 (o 1:\° 1
== X+ =-A = X-—-=-A —kA?
L 2m( +2>+2m< 2>+2
1 c2 A2 L, A2
= om (2X2+ A%) + ZkA
2 2
This is the lagrangian in the transformed coordinate system. O

5.2.2. (SMIN 2.7) Show that the complex Lagrangian £ = 9,09 ¢* — m?¢¢* is algebraically identical to

1 1 1 1
L=-0,010"¢1 — imfﬁbf + 58;@23“(1)2 - §m§¢>§

2
[ P1+ P2 (D1 — P2
o= ("57) vi("3")

if m; = msl = m and

Solution:
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Assuming the scalar fields ¢, and ¢, are real valued function. The complex field and its conjugate are

(91t P2 (P11 — P2 e _ (1t P2\ (1 — ¢
- (257) () - () (%)

= ¢p" = i {@51 + ¢2)” + (¢1 — ¢2)2} = — (T + 03 + 20102 + ¢; + 95 — 261 ¢2)

N

= LB+ )

0,60" " = 0, <¢1;¢2 +Z.<Z5142r¢2) o <¢1J2r¢2 i¢1;¢2>
1

) . 1 ) )

= 5 (aud)l + a,u¢2 + Zaﬂd)l + ’La#(ZSQ) 5 (8'u¢1 + 6“¢2 — Z@“gﬁ)l — z@“¢2)
1 . .

= Z(au%a“% + 0,010" P2 — 10,$10" 1 — 10,,$10" P2

+ 0,020,401 + 0,920 3 — i0,,$20" b1 — 10,,p20" P2
+1i0,$10" 1 +10,010" 2 + 0,010 1 + 0,1 0" P2

+ i@u¢>28“¢1 + ’L'augéga'uqﬁg + 6H¢>28“¢1 + 8M¢26‘u¢)2)

1

= 5 (04610"$1 + 0,620" $2)

Substuting these back in to the complex Lagrngian we get

528”¢8/L¢* _m2¢¢*
1 “w o 2 1 2 2
=3 (0.910" 1 + 0,920" ) —m §(¢1 + ¢3)
1 " 1 5.5 1 " 1 55
=3 910" P1 — §m1¢1 + §5u¢28 b2 — §m2¢2
This shows the two Lagrangian are equivalent. (|
5.2.3. (SMIN 2.9) Consider a lagrangian of real-valued scalar field:

1 1 1.
L= Qﬁugb@“qb — §m2¢2 — —c30°.

6
(a) Is this Lagrangian Lorentz invariant? It is invariant under C, P, and T transformations individu-
ally?
Solution:

Since every term in the lagrangian is a scalar it is trivially Lorentz invariant. As ¢ is real valued
scalar its complex conjugate is itself ¢* = ¢ since the C transformation transforms ¢ to ¢* which
are identical so the Lagrngian is invariant under C transformation.

It is not invariant under P and T transformation. 0

(b) What is the dinemsion of c3?

Solution:
Since the dimension of Lagrangian density is [E]* and the dimensionality fo ¢ is [E] the dimen-
sionality of c3 is [E]? O

(c) What is Euler-Lagrange equation for field?
Solution:

5 (0L \ _oc
8 (3(5u¢)> - 09

0, (9"9) = —m* — T ¢?
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This is the required Euler-Lagrange equation for the given Lagrangian density. O

(d) Ignoring the c3 contribution, a free-field solution may be written
Po(x) = Ae™PT 4 AT

for a complex coefficient A. Consider a lowest-order contribution for ¢; < A to a peturbation
such that ¢(z) = ¢o + ¢1. Derive a dynamical eqution for ¢;.
Solution:

0ud" (9(x)) +m*9(x) + 5¢* =0

Substuting ¢ = ¢g + ¢1

= 00" (0la) + 61(2) + m (9ole) + 01(2)) + yes(do + 1) =0

2
= 00" p1(x) + mPp(x) + %C?ﬂ% (1 + j;) = —0,0" o —m>yo
= 0,0" 1 () + m?¢1 () + %cmg (1 + 221) = —9,0"py — m*¢y
0

The first term in RHS of above expression is
9,0" o = g"" 0, (0uo)
= 0, ((~ip,) A= + (ip,) A"
=9, ((—ip")Ae™ ™" + (ip”) A*eP) ( Distributing g"")
= (—p"p,)Ae" P 1 (—pVp,) A* P
= —(E* — [p*)¢o

5.3 Homework Three

5.3.1. (SMIN 3.3) A particle of mass m and charge ¢ in an electromagnetic field has a Lagrangian
1

where ¢ is the scalar potential, and A is the vector potential.
(a) Suppose (just for the moment) that the potential fields are not explicit functions of x. Use
Noether’s theorem to compute the conserved quantity of the electromagnetic Lagrangian.

Solution:
Writing the Lagrangian in cartesian coordinate system we get

1
L= im (:'UQ + 92 + 2'2) —q(oly,2) — A, —gAy — 2A,)

Since the lagrangian is invariant under translation in & — = + € the conserved quantity is

e
Oi de ML+ 43

So the conserved quantity if the potential fields are independent of x is mi + gA,. O
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(b) More generally assume that the potential fields vary in space and time. What are the Euler-
Lagrange equations for this Lagrangian corresponding to particle position z*?
Solution:
If the potential fields depend upon space and time the Lagrangian becomes

£=tm(#a%) — g (o) — 5 4)

2
d (oL oL
dt \ 94? ox?
0p ;04
- (&Bi T o )

(25 2h)

The Euler-Lagrange equations are

d i
= X (mx + in)

= it : b
mr g dt ox* ox?

These are the required Euler-Lagrange equations. O

(c) Solve the previous solution explicitly for mZ. Express your final answer as a combination of E
and B fields.
Solution:
Specifically for ' =  the above expression becomes

dA, %—deaAw .0A, _ZBAZ
a1\ oz or Yoz ox
. A, dr 0A,dy 0A,dz L0A, . 0A L0A,
mi +q - —= — | =—q|—-FE;—d L
Jr dt Oy dt 0z dt

- 3Ax.+3Ax.+3Ax‘ 0B+ an.+aAy.+aAz.
meTd ax”’ ayy Bzz TRl 85856 8a:y 8:52

oo v (o0 A (04, 0A,
ME= @R T\ Y\ "5, Oy “\ o2 Oz

mi = qE, + q(yB, — 2By)
mi=qE;+q(r xB),

mi + q

This is the required equation of motion for the x coordinate under given Lagrangian. O

5.3.2. (SMIN 3.6) We've seen that a real valued scalar field may be expanded as a plane-wave solution:

3 1 ) )
ola) = [ s e+ ]

Gr) VE,

Computer the total anisotropic stress [ d®zT% where i # j, for a real-valued field by integrating over
the stress-energy tensor.

Solution:

The stress-energy tensor is

oL
TH — v pv
20, ¢8 ¢—g"L
For i # j g" = 0 so the Tensor reduces to
i = % iy — 0,007

0(9:9)
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For a complex scalar field given we have

d3 1 i . d3 ‘ ip-T * _ip-xT
dip(x) = / (27:)73 L, [cpd; (e77) +c5 (8;¢™7)] :z/ (27:))3 \;Fp [cpe™ 7% + cpe™™]

And similarly the

3 5 |
8J¢(-T) :/ d°p 1 [Cpaj (e_ip'x) +c; (8jeip.x)] _ —i/ d°p Pj [C e +C* ip- :c}

(2m)* \/E, (27m)° \/E,
Thus the product is
[ dp P ip - [ dPp p; _ip. -
T4 — ip-xT * ipx] | ip-T * _ip-T
Z/ (27)3 \/E [Cpe tcpe ] Z/ (27m)3 \/ﬁ [Cpe +cpe ]
d3p d3 pi —ip-x % _ip-x —iq-x * g
— / o [cpe DT e [eqe T T 4 el

3 3 .
:/ dp d*q  p'g; [Cpcqe i) ® oot eI Pm0T | o2 0 iP0) @y o2 o pilpta): }

(2m)3 (27r)3 VAE,E,

Integrating this quantity over the volume yields

d3 e
/de?sx — /d3 p o P4 [cpcqe Wty e oo 0T | e P T o o i(pta) }

VAT, E,
(5.1)

Since the integration operator is commutative for independent variables the volume integral reduces
the complex integral to Dirac delta functions

/ei(p‘”'”d?’w = (2m)°6® (p - q)

So if we perform ¢ integral any the integral is nonzero only when the ¢ value is equal to p as

a3 . .
/ Ui ee6® (p — q)(27)° = —22

(2n)? \2E, J2E, PP

So (5.1) reduces to

o d3 vy
/T” dBx = / P _PDj [cpc_p + cpc;; + c;cp + c;;c;;]

This is the required anisotropic stress requlred. (|

5.3.3. (SMIN 3.8) We might suppose, that a vector field has Lorentz-invariant Lagrangian
L=0,A"9,A" —m?A, A"

(a) Compute the Euler-Lagrange equations of for this Lagrangian.

Solution:
The Euler-Lagrange equation are
5 < oL ): oL
*\0(9,AY) 0AY
0,0, A" = —m?*A,

949, A" = —m> A

These are the required Euler-Lagrange equations. g
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(b) Assume a plane-wave solution for the vector field

d3p 1 —ip-T * ,ip-T
AM:/(QW)SEN GTN [ape™ """ + ay e

where we haven’t specified polarization state(s) e explicitly.

Develop an explicit relationship between polarization, the momentum of the field, and the mass.
What condition does this impose for a massless vector particle?

Solution:

The stress-energy tensor is

oL
HY vAa v
T 53, Q)E)A gL

— u AFIAY — g (9,470, A% — m® A, A%)

Using the given A" vector with every in this expression we get

d3 a3 1 . ) . )
/ ( 14 p,eoz q [apefzp-z +a;62p~x] [aqefzqm +a;ezq-m]

€
2m)3 (2m)3 \/AE,E,

Using smiilar development in (5.1) we get

d3p 1
T“”d3x:/ ete” e + PPe — m2)a,at
/ (27‘(’)3 \/m [(p P pp ) P p]
d3 2FE? — p?> —m?
—/ P nerZ7p P apay

= €
(2m)3 2E, P
|
(c) What is the energy density of the vector field?
Solution:
The stress-energy tensor is in the form For energy density u =0,v =0
700 / dPp o o2E; 2P —m?® |
= €€ apa
(2m)3 2E, P=p
This gives the required energy density. O

5.3.4. (SMIN 3.9) We will often describe multiplets of scalar fields,

?1
P = ,
<¢2
where ¢ and ¢5 is each, in this case, a real-valued scalar field for example
1 T L ogr
£§8H<I) oHd — 5m R

is a compact way of describing two free scalar fields with identical masses. This Lagrangian is symmetric
under the transformation

& — (I—i0X)®

where X is some unknown 2 x 2 matrix, and 6 is assumed to be small.
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(a)

()

What is the transformation ®T? Show that ®T® remains invariant under this transformation.
Solution:
Taking the transpose of ® we get

" — T (1-ioxT)
The quantity ®7® after transformation is
TP — T (I—ioX") - (I —i0X)®
= (®" — 92" XT) (& — i0X D)
=07® —i0dT XD — i0dT X7 P — 00T XX
=070 —i9d" (X + XT) @ — O(6)

But this transformation preserves the product ®7® only if X7 = —X so that the middle term
vanishes.

o7 - dT(1+i6X)
In either of these case
T —» oTo - 0(0?) ~ 0T P
This shows that this transformation preserves ®7®. ([l

What is the conserved current in this system?
Solution:
Writing out the Lagrangian in terms of ¢; and ¢ we get

1 o* 1
L= 3 (Oudr  0u02) <8u£;) - §m2 (61 ¢2) (2;)
1

= £ (Dur 61 + 000" 0) — m® (6% + )

For this transformation the transformed scalar field elements of the matrix are

) _ (1—1i0Xe0 —if0Xo1 ¢1) _ ((L—ibXoo)p1  —if0Xo162
¢/2 —ieXlo 1— igXll ¢2 —i9X10¢1 (1 — ZQXll) ¢2
Thus the derivative of ¢} and ¢, with 6 become

dof : o _ ~
j;l = —1Xoo¢1 — iXo102 % = —iX1001 — iX1102

The conserved current now becomes

oL déy  OL dd,
9(0u1) A6 " 0(Dua) db

= % (0" 1 (—iXoopr — iXo102) + 0" d2 (—iXo1¢1 — 1 X1102)) (5.2)

This gives explicit expression for conserved current in terms of matrix elements of unknown matrix
X. |

As we will see, for the particular case described int his problem, the elements of X are
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Compute the conserved current in terms of ¢; and ¢ explicitly.

Solution:
If this matrix is taken then Xoo = 0, X7; = 0, Xo1 = ¢ and X319 = —i. Substuting these in (5.2)

we get,

e = % [(8%1) 2 — (8" 2) 1]

This gives the explicit expression of conserved current for this particular transformation matrix. [J

5.4 Homework Four

5.4.1. (SMIN 4.1) Consider a rectangle.

(a) List all the possible unique transformations that can be performed that will leave it looking the

~

same as it did initially.
Solution:
The possible transformations that leave the rectangle looking the same are
i. Leaving where it is (I).
ii. Rotation through 180° (R).
iii. Flipping along the vertical axis through mid points of A & B and C' & D (F)).
iv. Flipping along the horizontal axis through mid points of A & C and B & D (F},).

|
Construct the multiplication table for your set of transformations.
Solution:
The multiplication table for the transformations is
o H I R F, F,
I I R F, F
R R I F, F,
F, || F, Y I R
F, )| Fy F» R I
|

Does this set have the properties of a group?

Solution:

From the multiplication table it is clear that the element satisfy closure. The element I acts as
the identity. Each elements are the inverses of themselves. And associativity is evidently followed.
This proves that the elements form a group. O

5.4.2. (SMIN 4.2) Quaternions are a set of objects that are an extension of imaginary numbers except that
there are three of them 4, j and k, with the relations

i? =42 =k =ijk=-1

(a) Construct the smallest group possible that contains all the quarternions.

Solution:

Closure of the group requires that at least, i, j, k and —1 to be the members of the group. Since
i? =404 = —1, i can’t be the identity of the group. Similarly j and k can’t be identity of the
group. That leaves —1 as the only candidate for the identity of the group. If we can satisfy other
requirement of group, then i, j, k and —1 will form a group with —1 as the identity.
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If we define —1 0 —1 = —1, which doesn’t violate any of the given requirements, —1, works as the
identity element.

Since i? = io0i = —1 and —1 is identity, i by definition becomes the inverse of itself. Similarly j
and k are inverses of themselves. So the group is

G({-1,i,j4,k},0)

(b) Compute the commutation relation [7,4].
Solution:
The commutator of a group is defined as
il = 57
Where i~ and j~! are the inverses of i and j respectively. Also since ijk = —1. Multiplying by
i~1 on the left gives jk = i and multiplying by k~! on the right gives ij = k. From (5.4.2a) we
have i ™' =iand j~ ' =3
o] = 3 = jigi = 3(i9)i = (k)i = (k)i = ii = —1
Since the commutator is identity element of the group, this group is abelian so that the elements
commute. 0

(¢) Construct a multiplication table for the quarternions.
Solution:
The multiplication table becomes

’ o H -1 ) k
-1 1 —1 ) 7
i i —1 k J
J J k-1 1
k k j i =1
This is the required multiplication table. O

5.4.3. (SMIN 4.6) Expand the series e~?%2 explicitly and reduce to common trigonometric, algebraic or
hypergeometric functions.
Solution:
The SU(2) rotation matrix with generator oo is M (#) = e~*%2. Expanding it out as a Taylor series
gives
2 3 4
e 092 =1 — ifoy — 0’%% +i0§’% —&—03% —

Since for the Pauli matrices 0?2 = 1 which implies that for odd powers the Pauli matrices are the
matrices themselves and for even power they reduce to identity, thus we can write

) 62 03 94
—i00 _ s 7 . v 7
e "7 =1 —1iboy o1 + i09 3l + m
g% o4 63
:175+I+...71902+202§—...

62 6 ) 63

= cosf — iogsin b
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5.4.4.

Writing out the explicit matrix form for identity (é ?) and o9 = ((z) _OZ) we get

; 1 0 0 —
_ _—ibos __ s :
M=c¢ cos@(o 1> Z<i O)sm@
_ (cosf —sinf
~ \sinf  cosf
This is the required 2 x 2 matrix representation of e =072, (]

4.10) Consider a universe consisting of a complex fie efined by two components
SMIN C d f lex field defined b
¢>1>
01) =
(%

L=0"d10,0 —m?®'o.

The Lagrangian takes the form

In some sense, there are four fields at work here, ¢2, ¢35, ¢1 and ¢7. But for the purpose of this problem,
you should generally think ® and ®! as representing the two different fields. Since each is a 2 — D
vector, there are still four degrees of freedom.

(a) Consider a rotation in SU(2) in 6! direction (0,). Expand M as infinite series, and express as a
2 x 2 matrix of only trigonometric functions of 6!.
Solution:
The SU(2) rotation matrix with generator o, is M (0) = e~*“=. Expanding it out as a Taylor
series gives
; 0 63 o
—ibo, _ 1 _ 27 - 37 47
e =1—ibo, — o} 51 +io; 3l + o0, 1
Since for the Pauli matrices o2 = 1 which implies that for odd powers the Pauli matrices are the
matrices themselves and for even power they reduce to identity, thus we can write

. 62 R
—ilo, _ 1 _ 2 _ ; _
e =1—1ibo, 51 +io, 3l + 1
0% 64 63
Slog gt Tl dioagy -

62 6 , 63

= cosf —io, sinf

10

b 1 0y /0 1Y
M=¢ —COS9(0 1 i1 0 sin 6
_( cos@  —isinf
~ \—isinfd cosf

This is the required 2 x 2 matrix representation of SU(2) representing rotation in 6! direction. [J

Writing out the explicit matrix form for identity <(1) (1)> and o, = (O 1) we get
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(b) Verify numerically that your matrix (i) is unitary and (é¢) has a determinant of 1.
Solution:
Checking for Unitarity

. cosf —isinf . cosf isind
MM _(isin0 cos@) <isin9 cos

_ cos? 0 + (—isin @) (isin 6) (icosOsinf) + (—icosfsin6)
" \(—icosfsinf) + (icosfsinb) cos? 0 + (—isin 0)(isin )
_ (sin® @ + cos? 0 0

o 0 5in20 + cos? 0

:(é ?);1

This shows the matrix is unitary. Checking for determinant

| cosf®  —isinf| .. . 9 .2,
det{M} = Cising  cosf | = cosfcosf — (—isinf)(—isinfh) = cos” 6 +sin“ 6 =1
The determinant of the matrix is also 1. O

(c) Compute a general expression for the current associated with the rotations in 6.
Solution:
This Lagrangian is clearly invariant under the transformation ® — M ®. The generator of which
is o9 thus the conserved current is

L=g"0,0'0,& —m*®'® L=0"d10,0 —m*dTo
oL oL
=g (I) = U(b p— #@T
= o,en 9 =9 = 30,0 7

oL d® dof  ocC

JH — bt il et
9(0,®) de ' de 0(9,01)
= O'DT (—ioy®) + (ioo®T)O D
=ioy (— (0"®7)  + 79" D)
This gives the expression for conserved current. O

5.5 Homework Five

5.5.1. (SMIN 5.1) Evaluate

(a) {7%°}
Solution:
0 01 _ 00 L 0.0 _0.0.0_of0 I\(0 I\ _ /(I 0)_
{777} ="+ =290 2(1 o)\ o) =21y j)=2Mx
The final matrix is the 4 x 4 identity matrix O
(b) 7*4%y*
Solution:

2 0.2 _ 0 g9 0 I 0 02\ 0 g9 —09 0 _OI_O
TYT = ey 0)\1 0)\=6o 0) T \=0p 0 0 o) \1 0)7
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O
() [v"77]
Solution:
(V'A% =1 =4
_ 0 o 0 o2\ (0 9o 0 o
o —01 0 —02 0 —02 0 —01 0
_ [ —0102 0 . —09201 0
o 0 —0109 0 —0901
o [0’2,0’1] 0 o —2i03 0
o 0 [0'2,0'1] - 0 —2i0’3
O
5.5.2. (SMIN 5.3a) Compute the various traces of the combinations og y-matrices explicitly
(a) Tr(7°4°)
Solution:
0 I 0 I I 0
0.0 _ _ _ 0.0} _
7y = (I 0) (I 0) = (0 I) = Lixa = Tr (1%") =4
O
(b) Tr(v'~")
Solution:
11_( 0 o 0 o1\ _ (-1 11y _
v (—al 0)\or 0)=l0 —f)=TrlO) =
O
(c) Tr(¥'4°)
Solution:
0 o 0 I o 0
1.0 1 _ 1 0,1\ _
M= (G D)0 00 ) e
U

5.5.3. (SMIN 5.7) In quantum field theory calculations, we will often find it useful to cmpute the products
like
[a(1)y"u(2)],
where 1 corresponds to spin, mass and 4—momentum of a particle state, and 2 corresponds to similar
quantities for second particle. For particle 1. m = my; p =0, and s = +1/2 and for particle 2, m = 0;
p=p.kand s= +1/2

(a) Calculate the vector values of [@(1)y*u(2)] for the states listed.
Solution:
For particle 1 m = my, p=0= E = \/p? + m? = m; and for particle 2 m =0, |p| =p, = FE =

VP2 +m?=p, And [a(1)y"u(2)] = uf (1)y°v*u(2) so we we have
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=ul(l)=ymi(1 0 1 0)

1 m/E+p 0

@=—"_1.2"1= 0 lim u(2) = | >
- \/m % - \/m m—0 - \/ﬁ

0 0 0

Alos the various product of gamma matrices are

o0 (0 I\(0 I\ (I 0 o1 (0 I
77_(1010_01 T 0
0270] 0 0'27—0'20 0370.[
77(10—020002 T\ o

Using these to calculate the vectors we get
the various components are
uf (1) %u(2) 2miE ul(1)7%9%u(2) =
w77 %u(2) = V2 E - (1) u(2) =

So the required matrix is

2m1E
_ 0
Ay = | o
2m1E
O
(b) Do the same for spin down states.
Solution:
Similarly for the spin down states we get
0
__m L t1) —
ul) === o =ul(1)=ymi(0 1 0 1)
my
0 0 0
w(2) = " Lo _|m/VE=p lim u(2) = | V2P
o E-p 0
Similarly we get
vV 2m1E
_ 0
ayu@)= [
vV leE



CHAPTER 5. THE STANDARD MODEL

()

Calculate the vector of values for s = —1/2

5.5.4. (SMIN 5.12) For the single-particle Dirac equation Hamiltonian

H=—iy'0i+m

147

(a) Compute the commutator of Hamiltonian operator with the z component of the angular momentum

operator [f[ , i2:| , Where

L=rxp
Solution:
Writing —i0; = p; we get
H=—iny'0; + m =~'p;
Since m is scalar it commutes with the L operator so we get
[FI : i/z:| = [v'pi, L:] = [v'Da + 7’0y + VP02 2P — y Py
But using the commutation relations [z;, p;] = id;; and [p;, p;] = 0 we get

[’Ylpwv zP, — yPJ = [’Ylpwv xpy} - [leam ypx] = 71(_ipy) = _Z‘fylpy
[V’py, 2Py — yP:] = [V’py. 2py] — [V’py yp2] = ¥ (ip2) = i7v*pas
[73p27xpy - ypzc} =0

Thus the commutation becomes

A1, L.] = —ir'p, + v P

Which is the required commutation relation of Hamiltonian and the z component of L.

now consider the spin operator

>
Il
DN =

o 0
0 o/°
Compute the z component of S$Zu_ (p)

Solution: .
The operator S and the state u_(p) are

1 0 0 0 0

v 110 -1 0 o0 om 1

=310 0 1 o u-(p) E_—pl| O
0 0 0 -1 E—p

This is the required state after operation.
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(¢) Compute {f[,é}}.
Solution:
Writing Hamiltonian as

Since the operator p; commute with the 4 x 4 matrices S and -~y
[V'pi, S2] = [v'p2 + 7Py + 7’2, S:] = e[V 5] + 0y [P S:] + [P, 5]

Using the commutation relations [SZ, 'yl} = iv? and [SZmQ] = —iv! we obtain
{f{’ §2:| = _i’y2pw + Z-'ley
Which is the required commutation relation. O

(d) Coomparint your answers, derive a conserved quantity for the free fermions.
Solution:
Clearly from two parts above [H , L+ S] = 0 thus the conserved operator is L + S. For free

fermion of state ¢(p) the conserved quantity is

(L+S)¢(p)

The eigenvalue of this operator gives the conserved quantity. O

5.6 Homework Six

5.6.1. (SMIN 6.2) Suppose, contrary to our work in this chapter, that the photon had a very small mass,
10~* eV. What would the effective range of the electromagnetic force be? Express your answer in
meters. Approximately how light (in kilograms) would the photon need to be such that earth-scale
magnetic fields would still be measurable?

Solution:
The interaction field is approximately given by

e—mr

Eint ~
drr

For a measuralble field E = 1 so with M = 107%eV ~ 1.8 x 107%°kg we have

—mnr

€ 1 =~ r~0.0795m

477

The magnetic field of earth is B = 25 x 10727 for this to be measurable in earth scale r ~ 6.4 x 10°m
we again solve for m in the equation

efmr

Bint & dmmnr

—m6.4x10°

25 x 1079 ~ —<

~ m = m=19x 10_7kg

The mass of photon has to be very low in order for this to be measured. ]

5.6.2. (SMIN 6.6) In classical electrodynamics, radiation is propagated along the Poynting vector,

S=FE x B,
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5.6.3.

an ordinary 3-vector. Express the components of S% in terms of components of F*¥ in as simplified
form as possible.

Solution:

In index notation the cross products of two vector is

Si = EijkEjBk
Since the magnetic field and electric field components in terms of the Farady tensor elements are
FOi — EI’L F’Lj _ Bk
The Poynting vector becomes

F02F12 _ F03F31
Si = EiijOjFij = S = FO03 23 _ 01 pl2
F01F31 _ F02F23

This is the required Poynting vector in terms of the components of Farady tensor. |

(SMIN 6.9) In developing the two polarization-states model for the photon we lied upon U(1) gauge
invariance, which in turn depends on a massless photon. We know that a spin-1 particle are supposed
to have three spin states, but we claimed that the third state was swallowed by the Coulomb gauge
condition. Lets’ approach the question of three states by assuming that the photon does have mass and
obeys lagrangian

1 1
E::—ZEWFW”+§AFAPA“

(a) Write the Euler-Lagrange equation for the massive photon field.
Solution:
Since by definition the Farady tensor is the antisymmetric tensor formed by various derivatives of
the components of A*.

F,, =0,A,—0,A, FHY = gAY — 9V A
The product term in the lagrangian is:

FMWE,, = (0"A” — 0" AM) (0, A, — 0,A,,)
= 91 AY0,0, — " AYD, A, — OV AMD, A, + 0 AMD, A,
= 2(0"AYD, A, — 9" A9, A,)

Writing out the lagrangian in terms of these components we get
L= L orAY0,A, — OMAYO, A 1MzA“A
~— 9 ( wiy v u) + 9 K

Thus the Euler-Lagrange equations become

o5 (0L \_ o
"\ 9(0,4,)) ~ 94,

—%aﬂ (9" A — 9V A) = %MzA”
—0, F" = M?AY

These are the required Euler-Lagrange equations. ]
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(b) Let the photon field take the form of a single plane wave:
At = ghe= T

Express the Euler-Lagrange equations as dot products of p and € with themselves and with each
other. Show that the transverse wave condition drops out of the dispersion relation regardless of
whether the field has mass.

Solution:

For this field the Farady tensor becomes

FFY = gl AY — OV AV = —ipus”e_ip‘”” +ip ete P = —4 (pue” — puet) e~

So the Euler-Lagrange equations become

—9, P = M?A”

— [ (pue” — pue?) (—ipt)e ] = M2 e P
(pHpue” — puetph) = M?2eV
(p-pe’ — pye-p) = M2e”

Regardless of the mass the coefficient of p, on the LHS must be 0 so the dot product ¢-p =0. O

What is the third possible polarization-state for a massive photon propagating in the z-direction?
Solution:

For this vector field, p-p = M? and ¢ - p = 0. For a particle moving in z direction with moentum
p. and Energy F the momentum 4-vector is p# = (E 0 0 pz)T
vector satisfying these relations apart from the ones given is

. The linearly independent ¢

Dz Dz E
0 0 0

€3 = 0 as €3-p= 0 0 =p,FE—FEp,=0
E E Pz

Since the inner product of ¢ with itself is p> — E? = —M?2, we could choose normalization factor

i/M for e. O

What are the electric and magnetic fields of the massive photon field in this third polarization
state? What happens to theose fields for m = 07

Solution:

Now the Electric and magnetic fields are simply the components of Farady tensor

B = F% = — (poe’ — p;e®) e
E, = F" = —i(poe' — p1°) e =0

Ey=F" = —i(poe® — p2e”) e =0

E,=F%=_ (poz-: — p3e ) T — (B —p?)e PT = M2 P
By = F9 — (p153 ,pﬂj) ip-x

B, = F? = —i(ps&® fp3€2) T =)

By =F¥ =—
B, =F" = —i(pie? —poe') e?* =0

So E = [—iM?¢~#*] 2 and B = 0. If M = 0 then the Electric field vanishes as well, so both the
fields vanish. O
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5.6.4. (SMIN 6.10) Consider an electron in a spin state

a
*=(3)
in a magnetic field By oriented along the z-axis. We will calculate the Larmor Frequency by which the

electron precesses.

(a) Turn the interaction Hamiltonian into a first order differential equation in time.
Solution:
The given interaction hamiltonian is

2 _ QeBO 1 0
Hint - - 2m (O _1)

Writing the hamiltonian as i0y = i%

lg a __QeBO a
ot \b)  2m \-b

So the differential equations are

Z@ _ _QeBOa Z@ _ quOb
ot 2m ot 2m
These are the required differential equations. O

(b) Solve the differential equation in part a. What is the Frequency of oscillation of the phase difference
between teh two components?
Solution:
The solutions are

ige Bg __igeBg
a = aqpe 2m t b=bge” 2m t

iqe Bot iqeBot 1q. Bot
SD = —_ —_ =
2m 2m m

The frequency of oscillation is

The phase difference is

iQeBO

m

This is the required frequency. |



Chapter 6

Statistical Mechanics

6.1 Homework One

6.1.1. A particular system obeys two equations of state

3As? As3
=20 (thermal equation of state), P = —Z
v v

T

(mechanical equation of state).

Where A is a constant.

(a) Find p as a function of s and v, and then find the fundamental equation.

Solution:
Given P and T the differential of each of them can be calculated as
6A 3As> 6As> 3As®
0T = 2Z2ds - “Zdv = sdT=""Tds - T
v v v v
3As? 2As3 3As? 2453
AP =" ds - v = wdP="""ds - " dv
v v v v

The Gibbs-Duhem relation in energy representation allows to calculate the value of p.

dp = vdP — sdT
3As? 24 3As3

3 6A2
= ds — ;dv— Sds—i— 5 dv
v v v v

2 3 3
=_ {3148 ds — ﬁdv} =—d (AS>

[ v

As
v

As? As?
du:—d(s) = u=-"
v v

This can be identified as the total derivative of so the rel

Where £k is arbitrary constant. We can plug this back to Euler relation to find the fundamental
equation as.

u=Ts—Pv+p
3452 As®  As? As3
= + +

152
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(b) Find the fundamental equation of this system by direct integration of the molar form of the

equation.
Solution:
The differential form of internal energy is

du =Tds — Pdv

2 3
= 34s ds — A—zdv
v

As before this is just the total differential of ATS3 so the relation leads to

3 3
du:d<‘4§) O
v

v

This k£ should be the same arbitrary constant that we got in the previous problem.

6.1.2. The fundamental equation of system A is

S =C(NVE)Y3,

and similarly for system B. The two system are separated by rigid, impermeable, adiabatic wall. System
A has a volume of 9 x 1075m3 and a molenumber of 3 moles. System B has volume of 4 x 10~5m? and

a mole number of 2 moles. The total energy of the composite system is 80J.

(a) Plot the entropy as a function of E4/(E4 + Ep).

Solution:
Since the total energy of the system is 80J the sum E4 + Ep = 80J. The total entropy of system

E 3 E4 3
NV -80- [ ——A NoVp-80- [1— ——A4
fmiso (GE ) 4 {1 22 ))

The graph of Entropy S vs the energy fraction is shown in Figure 6.1.

can be written as

S=C

<

=

>
|

o

[—

S
|

0.12

Entropy (Arbitrary Units)
o
—
|

\ \ \ \ \ \ \ \ \ \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
EA/(EA + EB)

Figure 6.1: Plot of Entropy vs energy fraction.

(b) If the internal wall is now made diathermal and the system is allowed to come to equilibrium,
what are the internal energies of each of the individual systems?
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Solution:

If the wall is made diathermal and the energy can flow the total energy of the remains constant
E = E4 + Ep. Taking differential on both sides we get dE = dE4 + dEg = 0. Since there is no
change in volume or the number of molecules dV =0 and dN = 0. Thus the differential relation
of entropy reduces to dS = %dE. The additive property allows us to write

1 1 dE 4 dEp 1 1
ds =d dSp = —dE —dE = =_== — =
S =dSs+dSp T, 1Fa + T, Fn = T T = T. Tm

The quantities T4 and T’g for each systems can be from the fundamental equation thus

1 (0S4 O (NaVa\Y? 1 (0Sp\ _C (NgVs\'?

Ta \OEs) 3\ E? T \0Ep) 3\ E%
These expressions can be simplified down to get and noting F4 + Ep = 80J we have two linear
expressions

NV,
Ep=+/"28E, E,+Ep=280 = Eo=5193J  Ep=2807J
NaVa

So the after equilibrium the internal energy of system A is F4 = 51.93J and for system B it is
Ep =28.07J. ]

(¢) Comment on the relation between these two results.
Solution:
The graph of S vs E4/(Ea + Ep) is skewed to the right and its maximum is at E4/(F4+ Ep) =
0.64. The final energy of system A is 51.93 which is 0.64 - 80. Thus the final final energies are such
that the total final entropy is maximum. O

6.1.3. An impermeable, diathermal, and rigid partition divides a container into two subvolumes, of volume
nVy and mVy. The subvolumes contain respectively, n moles of Hs and m moles of Ne, each to be
considered as a simple ideal gas. The system is maintained at a constant temperature T. The partition
is suddenly ruptured and equilibrium is allowed to re-establish. Find the change in entropy of the
system. How is the result related to the “entropy of mixing”?

Solution:
The fundamental equation of ideal gas can be written as U = ¢NRT and equivalently as PV = NRT
thus the quantities

U=cNRT =
PV = NRT =

Sine it is true for each of these systems we can write

1 P
ds==du+ —dv = ds=§du—|—5dv = s=58y+cRln 4 + RIn L
T T U v ; ;

? UZ

The initial and final molar volume for each of the gases is

nVy mVy
vp=—=W vin=——=W
n m
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Also since the temperature of system is constant and that no heat flows in or out of the composite

system the change in internal energy is zero thus u; = uy for both thus the total final entropy become
Sn = Son + CRln(ufh> =+ Rln(vfh

Uin
Similarly for Ne the final entropy of system is

Uih) = Son —|—R1n(1 + %)

Sn = Son + Rln(l + ﬁ)
m
The total change in entropy is

AS = msy, + nsp — (Mson + nsop)
= len(l + 2) + mspo + ann(l + m) + nspo — (MSon + nson)
m n

= nln(l + m) + mln(l + E)
n m
This is exactly equal to the Entropy of mixing.

6.1.4. The entropy of blackbody radiation is given by the formula

-
3 b
where o is a constant.

(a) Determine the temperature and the pressure of the radiation.
Solution:

The Entropy relation can be inverted to get

15t \'?

E=|——
25604V

Differentiating this with repsect to V' to get the pressure gives

- ()-8

ov ) 8‘/%0'%
The temperature similarly is

. (9B _ EYS
\oS) 29/ Vos
Thus the temperature and pressure are determined.
(b) Prove that

E
PV = —
3
Solution:

Substuting S = 20V1/*E3/% into the pressure expression

4

_ VBsi _ VB(gevViEM)t B B
8Vios 8Vigi 3V

Thus PV = % is proved as required.
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6.1.5. For a particular system, it is found that e = (3/2)Pv and P = AvT*. Find the molar Gibbs potential
and molar Helmholtz potential for the system.
Solution:
Since there are two equations of state we can modify them to express the intensive parameters as

9 P\ /4 9 1/4
3v Av 3Av?
These can be used in Entropy differential equation to get

1 P
dSZfd€+?dU
3A v? 1/4 8A 3 1/4
—(26) de+(27u2> dv

/4
The above expression can be recocnized as the total differential of (%)

128 Av2e3\ M/ 128 Av2e®\ M/
ds=d — = s=\—%— + S0

Multiplying thourgh by N to get the non molar quantities we get

1984 V2E3\ /4
S:( sAY ) + So

27 N
This above relation can be inverted to get the fundamental energy representation. So we get
27 N 1/3
E=|———(S— 5!
{128/1 pz (5= 5) }

This serves as the fundamental Energy relation which can be used to find the Gibbs and Helmholtz
potential.

We can now find the intensive parameters T" and P in terms of the extensive parameters as

OE o[ 21 N OV 1 N\ s
T= <as> =35 Lmvz(s —50) ] =54 <v2> (= 50)

We can invert to find S as a function of T' so
24V?
S =5y+ TT?’

Similarly we can find the intensive parameter P as

p—_ OE _ 1 N1/3 S — SO 1/3
oV 224 \%&

This can again be inverted to get V as a function of P

[ 1 NS =80t
" l164 p3

Equipped with these functions we can now find the Gibbs potential as
G=E-TS+ PV
B { 27 N

16A pP3

N 24V2 5\ | p [ 1 N(S— S0 1/5
1284 V2

(S — 50)4] " -T- (So +
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This gives the Gibbs Potential now the Helmholtz potential can be similarly found as

F=FE-TS
27 N JY° 24V2
B AT*V?
2N
. . A 4v2
Thus the Helmholtz potential is — :/2“N . O

6.2 Homework Two

6.2.1. Show that for a given N, with va p; = 1, the uncertainty function S ({p;}), takes its maximum value
when p; =  for all ¢, that is S ({p;}) = A(N)
Solution:
The uncertainty function is S ({p;}) = —C )", p;Inp;. We want to maximize this function subject to
the constraint ), p; = 1. Using Lagrange’s multiplier method to find the extremum of function, we
can define a new function S — A (>, pi — 1)

oS’ 0
[ T3 (2
_OZ (51']' lnpi + ;pi&j) - A <Z 51])
i J i

=—C(np;+1)—2A (6.1)

But for extremum condition of this function the partial derivative with respect to every p; should
vanish. Thus we get

lnpj:—%—l = pj:exp{—é—l}

The RHS of above expression is a constant, lets call that constant M so p; = M for some constant M
but since probability has to add 1 we get

1
=1 = M=1 = MN =1 = M=—
d2pi= > N
J J
Substuting this back we get
1
pj = M
Thus the uncertainty function takes it maximum value when p; = 1/N for all p; (|

6.2.2. Consider a urn problem discussed in class: An urn is filled with balls, each numbered n = 0,1,2.. ..
The average value of n is (n) = 2/7. Calculate the probabilities pg, p1 and pa which yield the maximum
uncertainty. Find the expectation value, based on these probabilities <n3 > —2(n).

Solution:
The expectation value of n is given by

(n)=po-04p1-1+p-2 = pi+2p=2/7
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This is one of the constraints for maximizing the uncertainty function, the other constraint equation is
po + p1 + p2 = 1. Using these as we calculated in (6.2) we have

s
§' =5 — ol +2p2—2/7) = Bpo+p1+p2—1)

Taking derivative with respect to o and 5 and equating to zero gives

Inpp+1—-=0
Inpp+1—-a—-p8=0
Inp, +1—2a—3=0

These three equations along with two constraint equation form five equation in five unkonwn pg, p1, p2, @, 8.
We can solve this equation to get the numeric value of the parameters. Solving for the parameters we
get

15 4 1

P11 = 57 P2 = 57

Po=751 21 21

Now the requried function is

(n*) —2(n) =po-0+p1-1°+ps-2° — (n)

2
:p1+8p2—2?
4 1 4
a7
=0

The requried value is 0

O

6.2.3. Assuming the entropy, S and the number of microstates, Q0 of a physical system are related through
an arbitrary functional form S = f(Q), show that the additive character of S (extensive parameter)
and the multiplicative parameter {2 meaning 2 = 1, ..., is the number of microscopic states for a
subsystem necessarily require that the function F(w) is of the form

S =kIn(Q)

where k is a (universal) constant. The form was first written down by Max Plank.

Solution:

Given the multiplicative parameter 2 = Q7 - Q5...€Q,.. The extensive parameter as a function of this
parameter which is a additive function be S. Thus we have

S(Q- Q.. Q) =SQ)+S()+...+5(Q)

S@ =5

Differentiating with respect to €2; on both sides

d d <
inS(Q) = o ;S(Qj)

dS(Q) dQ < dS(Qy)
dQ do; — Ao
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6.2.4.

But since the derivative of product 2 = II;§); with respect to €; is just the product without that
parameter % = II;£;€2;. Multiplying both sides by Q; we get

dS(@) _, ds(@) | ,ds©)

2 (i) =3~ = dQ; an

o dS(9)
=%

But the expression Ldz = d(In(x)) recognizing similar expression in both sides of the equality above
we get

ds(Q)  ds(e)

dInQ) ~ d(In<y)

The expression in RHS is independent of expression on right. Since the product of the parameters can
be varied while still keeping one of the parameters {2; constant. So the expression can only be equal to
each other if they are equal to a constant.

ds(Q)
d(In Q)

=k = dS(Q) =kd(InQ)

Integrating this expression we get
S(Q)=klnQ
Which is the required expression. (|
Show that in Inz < x — 1, if for all real positive . The equality holds for = = 1.
Solution:

Rearranging the equation Inz —z < —1. Let us define a function g(z) = Inz — z. Differentiating this
function with respect to x we get

1 1-— -1
1 T T

! _ 1= _
g(l‘)—x - =

Since for all positive values of z i.e., V& > 0 we have

r—1

-1
r-l<z=—"——-<1 =¢'(z)=— <-1
T

T

let f(z) =In(1+ ) — x so that f(0) = 0.

Clearly
x

f@) = -1

and hence ¢'(z) > 0if —1 <z < 0 and f'(z) < 0if x > 0. It follows that that f(x) in increasing in
(—1,0] and decreasing in [0,00). Thus we have f(z) < f(0) if —1 <z < 0 and f(x) < f(0) if z > 0.
It thus follows that f(z) < f(0) =0 for all z > —1 and there is equality only when z = 0. So we can
write

In(l+x) <z Ve > —1

Since z is just a dummy variable we can transform z — x — 1 to get
In(z) <z —1 Ve >0

This completes the proof. O
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6.2.5. Prove that log, X = lﬁ)gg;(. Interpret the meaning of

S==> pilogy(pi)

Solution:
Let y = logy, X. Raising both sides to 2 a gives us

v =2l8" = W=y
Taking logarithm on both side with respect to base 110 we get

_log X
~ log?2

log X = log (2Y) = log X = ylog?2 = Y

But by our assumption y = log, X thus we have

In digital electronics and in information theory where they represent the signal information in binary,
the logarithm of a number with respect to 2 gives the total number of bits required to represent the
number. Multiplying the number of bits log, N by the probability of the number gives the total average
number of bits required.

So then the entropy function S = — 3}, p;logy(p;) represents the infromation content of the binary
signal. (|

6.3 Homework Three

6.3.1. Show that for a given N, with va p; = 1, the uncertainty function S ({p;}), takes its maximum value
when p; = & for all ¢, that is S ({p;}) = A(N)
Solution:
The uncertainty function is S ({p;}) = —C )", p;Inp;. We want to maximize this function subject to
the constraint ), p; = 1. Using Lagrange’s multiplier method to find the extremum of function, we
can define a new function S — A (>, pi — 1)

oS’ 0

R

_CZ ((517 Inp; + plp15”> - A (Z 61])
i J i

= —C(lnpj+1)— (6.2)

But for extremum condition of this function the partial derivative with respect to every p; should
vanish. Thus we get

A A
lnpj:—a—l = pj:exp[—c—l}

The RHS of above expression is a constant, lets call that constant M so p; = M for some constant M
but since probability has to add 1 we get

Sp=L =>YM=1 =SMN=1 ﬁM:%
j ;
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Substuting this back we get

1
p; = M
Thus the uncertainty function takes it maximum value when p; = 1/N for all p; |

6.3.2. Consider a urn problem discussed in class: An urn is filled with balls, each numbered n = 0,1,2.. ..
The average value of n is (n) = 2/7. Calculate the probabilities py, p1 and ps which yield the maximum
uncertainty. Find the expectation value, based on these probabilities <n3 > —2(n).

Solution:
The expectation value of n is given by

(n)=po-0+p1-14+p2-2 = p1+2p2=2/7

This is one of the constraints for maximizing the uncertainty function, the other constraint equation is
po + p1 + p2 = 1. Using these as we calculated in (6.2) we have

S
S = C —a(p1 +2p2 —2/7) — B(po +p1 +p2 — 1)

Taking derivative with respect to o and 8 and equating to zero gives

Inpg+1—-—5=0
Inpi1+1—a—-=0
Inps+1—-2a—-5=0

These three equations along with two constraint equation form five equation in five unkonwn pg, p1, p2, o, 5.
We can solve this equation to get the numeric value of the parameters. Solving for the parameters we
get

15 4 1

P1= 57 P2 = o7

Po=57 21

Now the requried function is

<n3>—2<n>:p0~0+p1~13+p2-23—<n>

2
:p1+8p2—2?
_ 4 g1
21 21 7
=0

The requried value is 0

O

6.3.3. Assuming the entropy, S and the number of microstates, €2 of a physical system are related through
an arbitrary functional form S = f(Q), show that the additive character of S (extensive parameter)
and the multiplicative parameter 2 meaning Q = 4, {, ..., is the number of microscopic states for a
subsystem necessarily require that the function F(w) is of the form

S = kIn(Q)

where k is a (universal) constant. The form was first written down by Max Plank.
Solution:
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6.3.4.

Given the multiplicative parameter Q = Q1 - Q5...,.. The extensive parameter as a function of this
parameter which is a additive function be S. Thus we have

S Q... ) =S(Q) +S() + ...+ S(Q)

S =3 5(2)

Differentiating with respect to €; on both sides

d d <
inS(Q) = o ;S(Qj)

dsS(Q) dQ K dS(Qy)
dQ do; —~ Ao

But since the derivative of product {2 = II;Q2; with respect to {2; is just the product without that
parameter (?—éi = II,;4;€);. Multiplying both sides by €2; we get

Q, (11,29, dsS(Q) _q, dS(9;)

ds(Q)
a0 &

N dS(€)
dQ; dQ

=0
LA

But the expression Ldz = d(In(x)) recognizing similar expression in both sides of the equality above
we get
dS(Q)  dS(Q)

dnQ) ~ d(Ingy)

The expression in RHS is independent of expression on right. Since the product of the parameters can
be varied while still keeping one of the parameters €2; constant. So the expression can only be equal to
each other if they are equal to a constant.

ds(Q)
d(InQ?)

=k = dS(Q) =kd(nQ)

Integrating this expression we get
S(Q)=klnQ

Which is the required expression. O

Show that in Inz < x — 1, if for all real positive . The equality holds for = = 1.
Solution:
Rearranging the equation Inz —x < —1. Let us define a function g(x) = Inz — x. Differentiating this
function with respect to = we get
1 1—2 z—1

Vi
:——1: =
g'(z) o - -

Since for all positive values of x i.e., V& > 0 we have

-1
r-l<z=—"—-<1 =¢'(z)=—
T

let f(z) =In(1+ ) — x so that f(0) = 0.
Clearly
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and hence ¢'(z) > 0if —1 <z < 0 and f'(z) < 0 if z > 0. It follows that that f(z) in increasing in
(—1,0] and decreasing in [0,00). Thus we have f(z) < f(0) if -1 <z < 0 and f(z) < f(0) if z > 0.
It thus follows that f(z) < f(0) = 0 for all z > —1 and there is equality only when x = 0. So we can
write

In(l+z) <z Vo > —1

Since z is just a dummy variable we can transform z — = — 1 to get
In(z) <ax—1 Ve >0

This completes the proof. O

6.3.5. Prove that log, X = Iﬁ)gg); Interpret the meaning of

S==>pilog,(pi)

Solution:
Let y = logy X. Raising both sides to 2 a gives us

2V = glogz® = 2=z
Taking logarithm on both side with respect to base 110 we get

_log X

log X =log(2¥)  =logX =ylog2 =  y= log 2

But by our assumption y = log, X thus we have

log X

logy X =
082 log 2

In digital electronics and in information theory where they represent the signal information in binary,
the logarithm of a number with respect to 2 gives the total number of bits required to represent the
number. Multiplying the number of bits log, N by the probability of the number gives the total average
number of bits required.

So then the entropy function S = — )", p;logy(p;) represents the infromation content of the binary
signal. (]

6.4 Homework Four

6.4.1. Consider an N —dimensional sphere.

(a) If a point is chosen at random in an N— dimensional unit sphere, what is the probability of it
falling inside the sphere of radius 0.999999997
Solution:

The probability of a point falling inside a volume of radius r within a sphere of radius R is given
by

(6.3)
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Percentage of Volume

100

80

60 |

40

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Radius

where V(z) is the volume of sphere of radius . The volume of N dimensional sphere of radius
is

7.(.n/z
V(z) = ——a"
EESy

The progression of volume for different radius.
Using this in (6.3) we obtain

r n

= e 6.4
r=(%) (6.4)

This gives the probability of a particle falling within a radius r in a Ndimensional sphere of radius
R. O

Evaluate your answer for N = 3 and N = N4 (the Avogadro Number)
Solution:
For r = 0.999999 and N =3 and N = N4 = 6.023 x 10%> we get

0.999999

0.999999
p3=\—7 1

6.023x10%°
1 > = (0.0000000000000

3
) = 0.999997000003 PNa = (
The probability of a particle falling within the radius nearly 1 in higher two-dimensional sphere is
vanishningly small. O

What do these results say about the equivalence of the definitions of entropy in terms of either of
the total phase space volume of the volume of outermost energy shell?

Solution:

Considering a phase space volume bounded by E + A where A <« E. The entropy of system
bounded by the E + A and the outermost shell X(E + A) — X(E),

Sp = kln (EVE*A)> . Sa—kn <E(E+A) 2(13))

B3N B3N
Subtracting to see the differnce we get
5(E) %(E)
— =kln({l—-=—+~—"— < ——=—"—"—"—
S~ 5a n( Z(E+A)> = TS(E+A)

S(E)
S(E+A)

Sg—SA=0 S. & SA

< 0. So we obtain

But for large dimension, the ration
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This shows that the entropy interms of outrmost shell volume and the entire volume are almost
the same. ]

6.4.2. A harmonic oscillator has a Hamiltonian energy H related to its momentum P and its displacement g
by the equation

p* + (Mwq)? = 2MH

When H = U, a constant energy, sketch the path of the system in two-dimensional phase space.
Solution:
The phase space trajectory can be rearranged into

This represents an ellipse in the phase space with semi major axis a = v2M H and the semi minor axis

H
b=1,/200

Figure 6.2: Phase plot of the system.

The volume of this ‘volume’ in phase space for constant energy H = U is the area of ellipse which is

1 /2 2
V = mab = w2000 - Ly 20 21U
wV M w
This gives the required phase space ‘volume’. O
What volume of phase space does it enclose? In the case of N similar oscillators, which have the total
energy U given by

N N
Zp2 + Z(Z\lwq)2 =2MU
j=1 j=1

with additional coupling terms, too small to be included but large enough to ensure equipartition of
energy, what is the nature of the path traversed by the system point?

a ow that the volume of the phase space “enclosed” by this path is — (<= N
Show that the vol f the ph “enclosed” by th th ]\1/ 2’;U

Solution:
Lets assume that the phase space volume of n harmonic oscillators which form a 2n dimensional
ellipsoid be Cpa™b™ The coefficient can be found by usual method to be

,/T’I’L

Cn = TC(n+1)
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Noting that for this problem a = v2MU and b = % % The phase space volume becomes
" w1 20\ 1 (27U\"
EU:7< 2MU) =) == (2
() P(n+1) (w M n! \ w
This gives the required phase space volume. O

(b) Use the final result of (6.4.2a) to show that the entropy of N distinguishable harmonic oscillators,
according to microcannonical ensemble is

kT
=NEk|l+In|—
5= e [1+m(57)
Solution:

The entropy of system by definition is

- m (32 () -en () o)

Using Sterling’s approximation for we get

1
In () =-nlnn+n
n!

Susbtuting this back in the entropy equation gives

U [ U
S =nk—nklnn+nkln (ﬁLu) =nk _1+ln (nhw)}

But for the simpile harmonic oscillator the energy U = nkT using this gives

kT
=nk |[1+1In(——
=i ()

This is the require expression for the entropy of the system. O

6.4.3. Consider a system fo N particles in which the energy of each particle can assume two and only two
distinct values 0 and E(> 0). Denote by ng and n; the occupation numbers of energy level 0 and F,
respectively. The total energy of the system is U.

(a) Find the entropy of such a system.
Solution:
Since there are N = ng + n; particles the total ways in which ngy particle can go into 0 energy
level is given by

N!

o= "¢ —
nO!m!

n0:

So the entropy of system is

'> =kInN!—Eklnng! — klnnq!

S=klnQ = kln(
nonq:

For large N this can be simplified by using Sterling’s approximation as

N
S=k(NInN—-N+ng—nglnng+mny —nilnn;) = kN {ln () + My, (Tm)}
no N niy
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This can be rearranged to obtain
n n
5= ko () +mn ()]
This is the required entropy of the system. O

(b) Find the most probable value of the ng and n; and find the mean square fluctuations of these
quantities.
Solution:
For this system, the energy constraint is

no - 0+ ny - E=U
And the total number constraint is
N =ng+ nq

We have to maximize the function

S/
?:S—a(n0+n1—N)—|—B(n0-0+n1-E—U)

Differentiating with respect to each occupation number ny and n; and « and 8. We get

Inni+a=0
Inni+a+E=0

Solving these the only possible value of n; is

U U
nl:i nozN—nlzN—E

These are the possible values of ng and n; the occupation numbers.
|

(¢) What happens when a system of negative temperature is allowed to exchange heat with a system
of positive temperature?
Solution:
When the system of negative temperature is allowed to exchange energy with the system of pos-
itive energy the energy flows from the system of negative temperature to the system of positive
temperature. O

6.4.4. (Huang 6.4) Using the corrected entropy formula, work out the entropy of mixing for the case of
different gases for the case of identical gases, thus showing explicitly that there is no Gibbs paradox
any more. Find also internal energy, U, and chemical potential, i, using the corrected entropy formula
and corrected entropy formula. The latter is called ‘Sackur-Tetrode equation’.

Solution:
By using gibbs correction the phase space volume should be divided by N!

1 /v\Y 1 (VN[ 2\ xN2
Y(E)=— (= = (= — ) —~(V2ME)3N
(B) = 7 <h3> Csv R N! (h3) (3N)r(3§)( )

so the entropy function really becomes

S=kIn(2(E))=—-NInN + N + Nkln [;R?’} +kInCsn
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Since N is a very large number we can make the better approximation of the Sterling approximation

n/2
InC, =1n _r %nln(%e>
F(%—i—l) 2 n

Which yields us

3N 2me v 3
3Nk

ArmE\*/? 1%
_ Vv 3/2 3 5 4m
—Nkln(Nu )+2Nk {3+ln<3h2 )}

This is the fundamental equation of the system shich can be always inverted to find our intensive
parameters. So the internal energy becomes

g (BNRNT (255
“\dammv) P\ 3Nk

6.5 Homework Five

6.5.1. (a) A system is composed of two harmonic osicllators, each of natural frequency wy and each having
permissible energies (n + %) hwgy, where n is any non-negative integer. How many microstates are
availabel to the system? What is the netropy of the system.

Solution:
Let the first oscillator be in n; and the second be in ny state. The total energy of the system then
is the sum of the energies of each one

1 1
(n1+2)ﬁwo+(n2+2>hw0=n'hwo :>n1+n2+1:n’

The first of these oscillators can go to any one of n’ states, but the second one is constrained to
be in ny =n' —ny — 1 state. So there is freedom of only one choice among n’ states. So the total
number of microstates is just

’ n.:
R TICE T
So the entropy of the system is
S = kln(n')

In terms of energy of the system E’ = n'hwg, the entropy becomes

E/
=kl
S kn(mo)

This is the required entropy of the system. O
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(b) A second system is also composed of two harmonic oscillators, wach of natural frequencey 2wy.
The total energy fo the system is E” = n”hwg, where n” is even integer. How many microstates
are available in the system? What is the entropy of the system?

Solution:
Let the first oscillator be in n; and the second be in ny state. The total energy of the system then
is the sum of the energies of each one

1 1
(n1 + 2) 2hwo + <n2 + 2) 2hwy = n'"hwo =ni+ny+1=n"/2

Since n'’ is even integer the number m = n’/2 is another integer. The first of these oscillators can
go to any one of m states, but the second one is constrained to be in no = m — n; — 1 state. So
the total number of microstates is just

m)! n
Q - T)’LC = 0 = = —
Y T mo1y - T 2

n//
P 1 —_—
S kn<2>

In terms of energy of the system E” = n''hwy, the entropy becomes

E‘//
=kl
S=k n(2hw0)

This is the required entropy of the system. O

So the entropy of the system is

(c) What is the entropy fo the sytem composed of te two preceeding sybsystems (separated and
enclosed bya totally restrictive wall)? Express the entropy as a function of E” and E'.
Solution:

The total entropy of the system is just the sum of individual entropies so

E E// E/El/

This gives the total entropy of the system composed of two given subsystems. O

6.5.2. A system consists of three distinguishable molecules at rest, each of which has a quantized magnetic
moment, which can have its z-component +M,0 and —M. Show that there are 27 different possible
states of the system; list them all, giving the total z—component M; of the magnetic moment for each.
Compute the entropy S = —k ), fiIn f; of the system for the following priori porbabilities:

A: -M -M -M -M -M -M -M -M -M M M M M M M M M M 0 0 0 0 0 0 0 0 0
B: -M -M -M M M M 0 0 0 -M -M -M M M M 0 0 0 -M -M -M M M M 0 0 0
C: -M M 0 -M M 0 -M M 0 -M M 0 -M M 0 -M M 0 -M M 0 -M M 0 -M M 0
Sum: -3M -M -2M -M M 0 -2M 0 -M -M M 0 M 3M 2M 0 2M M -2M 0 -M [ 2M M -M M 0
(a) All 27 states are equally likely.
Solution:
If all states are equally likely then the probability of each state is f; = 2% So the total entropy of
system is
27 1
S = —kailnfi = 212—7111 (27) = kIn27
7 1=
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(b)

Each state is equally likely for which the z-component M, of the total magnetic moment is zero;
fi = 0 for all other states.

Solution:

There are six states where the total moment is zero. So the if all them are equally likely and the
rest has probability f; = 0 then we have

6
S:—kailnfi:Z%ln (é) =kIn6

i=1

This gives the required entropy. O

Each state is equally likely for which M, = M; f; = 0 fro all other states.

Solution:

There are seven states where the total moment is M. So the if all them are equally likely and the
rest has probability f; = 0 then we have

7
S:—k;Zf,»lnfi:Z%ln (;) =kln7

i=1
This gives the required entropy. O
Each state is equally likely for which My = 3M f; = 0 for all other states.

Solution:

There is just one state where the total moment is 3M. So the if all them are equally likely and the
rest has probability f; = 0 then we have

1
1. /(1
S:—ka,»mfi:len(J =kInl=0

i=1
This gives the required entropy. O
The distribution for which S is maximum subject to the requirement that Y f; = 1 and the mean
component » . f;M; = ~vM. Show that for this distribution

e(BM—M;)a

= vev oy

where x = e*M (o begin Lagrange multiplier) and where the value fo z is determined by equation
)
= ‘Z’(jw fmf Compute x and S for v = 3 and compare your answers.

Solution:
The entropy of the system is S = —k > f;1n f;. We have to maximize this function subject to the
constraints ), f; = 1 and ), fiM; = yM. Using lagranges multiplier technique the function to

maximize the function % is

F=Zfi1nfi—o/ (Zﬁ—l) .y (ZfiMi—vM>



CHAPTER 6. STATISTICAL MECHANICS 171

Differentiating with respect to f; and setting equal to 0 we get

oF [0 oln f O~y O
afj‘zi:[aflmﬂ P o o2 5y, TP LMy,

_Z[aljlnfl+fl z:| Z(Slj ZMZ(;U

:1nfj—|—1—05 —IBM]

[e%

For maximum the derivative has to vanish, setting this derivative equal to zero we have
Infi+a—-BM;=0 = fi = e tPM; (6.5)

The sum of probability constraint and the average constraint are
P S IR o
i i i

The last expression on the right can be written as the sum over all the total moments M; with

multiplicity g(M;) as
et = Zg(M eBfM
M;

Looking at the configuration table we have that the multiplicity for each states is
gBM) =g(=3M) =1 g(=2M)=g(2M) =3  g(-M)=g(M)=6  g(0)=7

Denoting z = e we have

=g(=3M)x™3 + g(—2M)x2 + g(—M)z~ " + g(0)2° + g(M)z + g(2M)x* + g(3M)2*

=23 4+327 %+ 627 + 7462+ 322+ 23

2 (14 3z + 627 + 72® + 62" + 32° + 2°)
42+ x2)3
23

Substuting this back into (6.5) we get

r3ePMi e3BM+BM; 6(3M+Mi)5

f' = = =
Yot a+a?)?® (Qtz+a?2)?® (1taz+a?)?
Now invoking the average moment constraint we get

> fiM; =M :>Z s M; =~yM
5

1+x+x2

Using e® = Y, e#Mi the expression becomes
3

T 0 z3 oe”
_— AMil — M = — =M

Since we have z = ¢#M  this can be differentiated to get = Mz. And substuting e® from (6.6)

) dﬁ
the above expression becomes
x> 2 (1+x+x2)3 %_ M
(1+z+22)° 0z x3 op E
3 3(2? —1) (1+x+x2)2
Mx =~vM
(L +atar) o Y
3(z2 -1
EGEI

1+x4 22
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Solving this equation for various values of v we get a quadratic equation.

==

3(12 — ?)

(y=3)z>+yz+ (y+3)=0 ==

Specifically for 3 > v > 0 we have to choose the positive sign so

L 1HVB2-97)

2(3—19)

For the various values computed are

y X S
0.0 1.0 -3.29584

1.0 1.69 -3.04037
3.0 -2.0 00

This gives the various values of entropy for the given values of -y.

6.5.3. Prove that for a system in cannonical ensemble

aC
AE3) = k? {T“ (“) +2T3Cv}
(AE%) ).

in particular, for ideal gas

()5 = (&)

The expectation value of cube of fluctation of E from mean value can be written as

Solution:

(AE?) = <(E - <E>)3> - <E3 —3E*(E) + 3E (E) - <E>3>
= (E®) —3(E*) (E) + 3(E) (E*) — (E)°
(AE®) = (B?) = 3(E%) (E) + 2(E)°

In light of (6.7) The average energy of the system can be written as

Eie_BEi
SRS =

Differentiating (6.7) with respect to 8 we get

ou _ZE?e‘ﬁEi N —ZE-e_*BE'i S EePE:
— (e o)

B eE
7ZE§€76E1' n S Eie PE: ?
S e—PE; S e—PE;
> B

= W+UQE<E2>—<E>2

23 -7)

|

172
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Differentiating (6.9) again with respect to 8 we get

AR, X Bfe” —pE; oU
982~ S e PEi Ty ehE) Z —E;e™? +2U%
e Pb 20—BE; o—BE; )
- ZZE;‘“V‘ - FZE;_M 'ZZE;_aEi ]+2<E> [— (E?) + (E) }
= (E%) - [(E?)(B)] - 2(E) (E*) + 2(E)°
=<E3>_3<EQ><E>+2<E)3 o)

Comparing (6.7) and (6.10) we get

(apyy_ PU_ D (VT o (oUdTY T
ap2  ap\oTas)  OT \oT 05 ) 93
Since g = 1 the derivative 2 Bﬁ = —kT? and recocniging that gg = C, we get
0 ocC. oC,
3 2 2y 200y 2y _ 1.273
(ap%) = L (k1?0,) (k1) <I<:T . ,,)(ng) kT( o )

This is the required expression for <AE3>. Using U = 3NkT;U? = 9N2K?T? and with C, =
3NK, %2 = 0 and substutig back in the expression we get

B (s

These are the required values for ideal gas. O

6.5.4. Verify that, for ideal gas,

S Q1 Oln @,
v (%) m1>P
Solution:

For an ideal gas, we assume that each molecule is free and so they dont exert force on each other, so
the potential is zero. Also they have same momemtum in all directions which leads to the hamiltonian

A A T
2m 2m  2m  2m

1 [ 1 T
1%

— 00

The integration of the space coordinates ¢; just makes gives the volume of the system as it is independent
of the momentum coordinates

_ 14 r 1 pi py 2
Q1= B /eXp [_ﬁ <2m ta, 2 dpzdpydp.

oo

Since the momentum in each direction can be considered to be the same and the parameter 5 = we

get

T
[eS) 00

\%4 1 p2 p2 2 \%4 p2
= — _— —_— —_— —_— = — 2 —
@ =33 / eXp[ kT ( * om 5 om ) | PP = 33 / P\ =it ) P

00 0
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This integral is just the gamma function and the integral is easily computed to be mTkT -y/m. So the
partitiion function becomes

3 2mmkT \ >/
0, = % [\/2ka : \/ﬂ —v (m;;)

Ja—

n

Also for ideal gas the relation PV = NKT takig the various derivatives of the partition function we
KT <27rka>3/ ?

get
m (@) =
N P h?

omQ,\ 0 3. (2mmkT\] _[1 _ 31] 5
( 5T )P—aT[ln(NKT) 1nP—|—21n<h2 )L}—[ 0+ }—

Combining these two we get

Q1 Oln@Qi\ _
ln<N>+T< a7 >ln

The expression on the right is just % O

kT (27rka) 8/2




Chapter 7

Quantum Mechanics 11

7.1 Homework One

7.1.1. (Sakurai 2.33) The propagator in momentum space is given by (p”, t|p’,to). Derive an explicit
expression for (p”,t|p’, to) for the free particle case.
Solution:
For a free particle the Hamiltonian is

p2

T 2m
So the time evolution operator for any state in momentum space is given by

ip3t
2mh

Ut) = e

= exp {

The base kets evolve over time as

ip*t
P =UOT0) Bt = 01U = (ol | 22

So the propagator becomes

(p”.tlp’ to) = (p”, 0lexp W exp i p’,0)
’ o ’ 2mh 2mh ’
{ /12 /2 'z ’
= —_ t—p“t ,0|p’, 0
€Xp {th (p p 0)} (p 1p’,0)
(p”2t _ p/2t0):| 5(1)// _ pl)

- {th

This gives explicit expression for the propagator of the free particle. |

7.1.2. (Skurai 2.37)

. ihe 2z x x
(a) g/erllfy [, 1] = (29) 51 By. and m&G% = P =e[E+ & (2 x B— B x 92)]
olution:

175
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The kinematical momentum for electromagnetic field is defined as IT = m =p-— % where A
is the vector magnetic potential is a function of operator . The commutator then is

[11;, 11;] = {Pi - SAmPa‘ - SAJ}
b~ ][]+ )

e[ . DA, 0A;
O_C(_max) (83:]>+0

ihe (0A;  0A,
61),‘ 81‘]‘

Cc

ihe
C

repeating this same process for all the components of this kinematical momentum operator we get

ihe
[HmH ] EljkBk (7.1)

The Hamiltonian for electromagnetic field id H = % +e@. For the Lorentz force formula we have

m‘é—f = II differentiating this with time gives m%

we can write

= %1 by using Heisenberg equation of motion

2 .
mddt? N dcil - m[H“H}
= % [H % + eé]
2
— z’lh[n“ gn} + %[pi + SAz,ab]
= 3 T+ i e
J

But the commutator of [Hi, H?] = IL.[II;, IT;] + [IL;, IL;]IL, which by use of (7.1) reduces to
ihe ihe
[IL;, 117] = 11, sz]kBk + s”kBkH
And also & [p;, e¢] = & (—ih) 5 9 — _eF;

Using these two facts back in 1n the original commutator leads to

d?z;
m
de2

ihe h
= leh Zgzjkp]Bk + ngkBk — ekl

B dz; dzy,

The above expression can be obtained for each components ij and k to obtain the required relation

in 3D
d?z dlI 1 /dx dx
" T e[ * o (dt X dt)]

This is the required lorentz force relation. |
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. . . . . . 2
(b) Verify % + V'3 =0 with j given by 5 = (7% Im(* V') — (%) Al ,)

Solution:
By definition the probability density function is the absolute value square of waefunction. The
Hamiltonian for electromagnetic field for arbitrary wavefunction v is given by

112 2 e \2

H=—+ep=— (p—fA) + e

2m 2m c
The momentum operator in position space wavefunction can be written as —iAV. Using the
schrodinger equation Hvy = FE1 where operator E is given by E = ih% we get

0
H = ihi
o 11 [ . e
a—%_%(‘w‘zf‘) +6¢]
1[-r*_, . e e
1 [-R?_, L€ e,
=i %V ¢+m27mc(v.(A¢)+Alvw)+2mc2A Y+ (eg)y
_in, &

T 2m 2mc?
i
" 2m

e e e —1
v2w+2m(v-A)w+2mA-w+2ch-w+h( A2+e¢>¢
62
2mc?

v2¢+26(v-A)w+eA-w+_i< A2+e¢>¢
mc mce h

Taking the conjugate of this expression leads to
oY*  —ih

Tz € o AVt b C AL &
o = o Y Vg (VAU b A vw+h<

62

A% 4 eqb) P* (7.2)

2mc?

Taking the time derivative of the probability density function we get
op 0 0 *6¢+81/1*

ot ot ot ot ot
For a divergence free magnetic vector potential (which we can always choose), Multiplying (7.2)
by 1 and its conjugate by 1* and adding we get
9
ot

(G

=T LV U AL (V) + S VR U A (V)
ih * 72 2 % € * *

g 197920 U]+ A (V) + A (V)
ﬂ(zz'v -Im(y* V) + i(v - (AY™Y))

2m

_ 7%v (I (V) + V- (AR[)

- V. (h Im(¢* Vi) — —— AW)
m mc
- V.j

This completes the proof. O

7.1.3. (Sakurai 2.38) Consider a Hamiltonian of the spinless particle of charge e. In presence of a static
magnetic field, the interaction terms can be generated by

eA

Poperator — Poperator - c )
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7.1.4.

where A is the appropirate vector potential. Suppose, for simplicity, the magnetic field B is uniform in
the positive z— direction. Prove that the above presciprition indeed leads to the correct expression for
the interaction of the orbital magnetic moment (e/2mc) L with the magnetic field B. Show that there
is also an extra term proportional to B?(z? + y?), and comment briefly on its physical significance.

Solution:

Since the electric field is zero we can assign a scalar potential as constant and the constant can always
be chosen 0 thus ¢ = 0. The vector magnetic potential for uniform magnetic field is A = %az X BZz.
Since there is a free choice of vector magnetic potential as long as its curl is divergence free, we chose
this potential which is also divergence free. Thus for this case V- A = 0.

From (7.2) we have the hamiltonian of the system is

ih ih 2
H_——v2+QA ViV A+
2m 2mc?

Since V- A = 0 by our choice the interaction operator terms introduced due to the presence of magnetic
potential is

A2

ihe e2 e e2
—A- A? = —— A (—ih
me v+ 2mc? me (=ihV) + 2me

2
;A
But the operator —ihV is the momentum operator p and A% = %32 (x2 + y2) This enables us to write
the interaction terms as
232

e 1 2 A e
_ % p= (_ 3 .) ) 2 2
me 2 yit p+8mc2 (x —I-y)
We can recocnize the term (—yi + xj) -p = —yP, + P, = L, Substuting this in the above expression

we get

e e?B?
BL, 2492
2me + 8mc? <I ty )
So the final hamiltonian becomes
72 e 02 B2
H=|--—-V’+_—BL, 24P
2m + 2me + 8mc? (x ty )

So the interaction terms introduced in the absence of scalar potential but the presence of magnetic po-
tential has operator for orbital angular momentum 5> BL, and a term proportional to B2 (m2 + y2) O

(Sakurai 2.39) An electron moves in he presence of a uniform magnetic field in the z-direction (B =
Bz)
eA, eA,

(a) Evaluate [II,II,] where II, = p, — o I, =p, — —

Solution:

(1L, I1,] = { z — iAw7pu A ]
i [ S - [Ean] + 24,5
ot ()

c or c Oy

e

zhe

= Z
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Which is the required expression for the comutator. O

(b) By comparing the Hamiltonian and the commutation relation obtained in 7.1.4 with those of the
one-dimensional oscillator problem, show how we can immediately write the energy eigenvalues as

h2E3 leB|h 1
Eyn=——+|—— n+ -
2m me 2
Solution:

Since the charged particle is only in the magnetic field, the electric field is absent, which means the
electric potential is a constant whiich we may assume to be 0. So the hamiltonian of the system is

2 2
RS S R AL
2m 2m  2m  2m

The energy eigenvalue equation for the a general wavefunction v, (z’) we have

e
2m  2m  2m

Hwa(x/) = wa(x/)

Since the magnetic field is completely in Z the vector magnetic potential can be written as A(x) =
%w x Bz so that A, = 0. This simplifies the eigenvalue equation to

2 112 112
pz + Yy + '
2m  2m = 2m

H%(xl) = %(33/)

The first of these three expression p, has known eigenvalue hk given in the problem. The second
two terms can be evaluated using the One dimensional simple harmonic oscillator. Since the
comutator [II;,II,] = ih¢B we can scale I, by -% to make [H:,;7 il‘[y] = ih. Let Y = I,
Using this the expression becomes

p? 12 1 e*B?

2m * 2m + immzc2

Hunla) = | V2| ()

We can again try the raising a operator and lowering operators a' out of the last two expression.

eB ic eB ic
=1/— - T/ _ =
@ 2hc (Y + eB Hm) “ 2he (Y eB Hw)

And since afa = s H + 5[V, 11,] = ’Zggc — % In complete analogy to SHO we find aa works

as simultaneous operator with Hamiltonian H, i.e. afa commutes with H, and so acts on energy
eigenstates to give integer n as its eigenvalue. So the eigenvalue become

2 H2 1 232
Hia(e!) = [ Eovalw)] + 32+ g S ate)
h%k? B
Hunl) = "petale) + | (4 3 ) 1 0

So the eigenvalue of the operator H which are the energy values are

h2 k2 1 B
E, = +n+ = hﬂ
2m 2 mc

This gives the allowed energy of the charged particle. |
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7.2 Homework Two

7.2.1.

7.2.2.

(Sakurai 3.1) Find the eigenvectors of o, = —z)' Suppose an electron is in spin state (g) If

0

Sy is measured, what is the probability of the result &/2?

Solution:

Suppose the eignevalues of the matrix are A. The characterstics equation for the matrix is

O-NO—-A) —(—i-i)=0 =A==+l

Let the eigenvector be (;) Then the eigenvector corresponding to A = 1 we have

CNOAE) -
1 0 Y Y o=y y =1

Normalizing this eivenvector we have the normalization factor v/12 + 12 = V2. So the required nor-
malized eigenvector corresponding to A =1 is

7 ()

Then the eigenvector corresponding to A = —1 we have

C D) - e
1 0 Y Y o=y Yy =—i

Normalizing this eivenvector we have the normalization factor v/12 + 12 = /2. So the required nor-
malized eigenvector corresponding to A = —1 is

7 (%)

So the eigenvectors corresponding to each eigenvalues are

e ) e ()

Let the arbitrary spin state be |y) = (g

the matrix representation of the S, operator is %O'y. The probability that the state be measure to be
in S, with eigenvalue % is

oo =@ 85 (3 ) (5) =50 #) () =G (sar 45

So the probability of measuring the given state in |S,;+) state is % (af* — a*B). |

) such that its dual correspondence is (y| = (a* 5*). Since

(Sakurai 3.2) Find, by explicit construction using Pauli matrices, the eigenvalues for Hamiltonian
2u
H=--—-S'B
h
for a spin % particle in the presence a magnetic B = B,X + B,y + B.Z.
Solution:

The hamiltonian operator in the given magnetic field as

P
H= —# (SuBa + S,B, + S.B.)
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Since the spin operators Sg, S, and S, are the pauli matrices with a factor of /2 we can write the

above expression as
2wh [(0 1 0 —i 1 0
H==35 [(1 0)3”(@' 0>By+(0 —1)32}
B.  B,—iB,
B,+iB, —B.

The characterstics equation for the this matrix is
(B2 = A)(=B: = \) = (By —iBy)(By +iB,)) =0 =X —-B}—(B2+B;)=0 = \=x|B|

So the eigenvalue of the Hamiltonian which is —p times the matrix is —u - A = Fu|B)|. ]

7.2.3. (Sakurai 3.3) Consider 2 x 2 matrix defined by

ap+1i0-a
U= ——-—
ag — 10 - a

where ag is a real number and a is a three-dimensional vector with real components.

(a) Prove that U is unitary and unimodular.
Solution:
Given matrix U and hermitian conjugate can be written as

ap +1i).;a;0; ot ao—izjaja;(

fao—izjajUj ao—izjaja}

Multiplying these two to check for unitarity
UTU _ ag — ZZJ CL]'O':]t ' ag +'LZJ a;0;
ao—izjaja;[ aO_iZjaij

a2 +iag 220545 —iagy_; J;aj +22 20 o;fajakak

ag —iag > ; 0ja; +iag Y U;faj +30 2 U;ajakak

T

Since each pauli matrices are Hermitian, for each i we have o; = 0;. This makes the numerator

the exact same as the denominator. Thus they cancel out

Ut — a% + 2a9 Ej oja; —iag Zj oja; + Ej Zk 0ja;0Kak .
a% — iag Ej oja; + tag Zj oja; + Ej Zk 0000k

This shows that this matrix is unitary. Expanding out the matrix in terms of the pauli matrices

we get
ag +taz 1a1 + as
det U — ial — a2 ag — iag o (ao + iag)(ao — iag) - (ial + ag)(ial — ag) o a% + a% + CL% + CL% -1
ag —ias  —iaq + as (ao —ias)(ao + ia3z) — (—iay + az)(—iay —az)  af + a? + a3 + a3
—ia1 — as ao + ia3
This shows that the matrix is unimodular. O

(b) In general, a 2 X 2 unitary unimodular matrix represents a rotation in three dimensions. Find the
axis and the angle of rotation appropriate for U in terms of ag, a1, as and as.
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Solution:
The matrix can be rewritten as

- 1 (ao —a? + 2iagas  2agas + 2iagay >

©a? +a? \ —2apaz + 2iaga;  ag — a? — 2iagas

. . . b .
Since the most general unimodular matrix of the form (LZ* a*) represent a rotaion through an

) (7.3)

) (7.4)
Making these comparision in this matrix we get

2 2 2 2
ag —a a§ —a
cos<¢) = g :>¢):2acos< g )
g

+ a2

angle ¢ through the direction fi = n,;X + n,y + n.2 related as

IIRSS

Re(a) = cos@), Im(a):—nzsin(

ICIRSH

Re(b) = —n, sm(ﬁ), Im(b) = —ng, sin(

And similarly we get

a1 a2 as
Ng = — 7 ny:im nzzim

This gives the rotation angle and the direction of rotation for this given unimodular matrix. [
7.2.4. (Sakurai 3.9) Consider a sequence of rotations represented by
-, —q —q —i(at7)/2 00g B _e—ilat1)/2 oog B
(1/2) _ 1030 1023 io3y) (e cos e cos
P (@ 8,7) = exp( 2 xp 2 xp 2 T \emHe=7)/2gn é eat7)/2 ¢og g ’

Solution:
Again this final matrix can be written as a coplex form as

o
@]
)]
Q
+
5
S—
+
o~
2]
B
—~
‘Q
+ o
)
S—
S—
o
@]
)]
@ @
I
—~
o
@]
)]
Q
+
)
I
~
)
=
]
Q
JF
)
o
@]
9]
N [

Let ¢ be the angle of rotation represented by this final rotation matrix. Using again the equations (7.3)

we get
COS(?) = cos(a;_v) cos<§> = ¢= 2cos ! {cos(a ;_ 7) cos(i)}

This gives the angular rotation value for this matrix. The direction of rotation can similarly be found
by using (7.3) to calculate the directions. O

7.2.5. (Sakurai 3.15a) Let J be angular momentum. Using the fact that J,, Jy, J. and Ji = J, + J, satisfy
the usual angular-momentum commutation relations, prove

JE=J2 4 g J. —hJ,

Solution:
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Multiplying out Jy and J_ we get
Jydo = (Jg +idy) (Jy — iJy)
=Jp =iy +idy e+ J;
=J2 —ilJ,, Jy] + Jg
=J; +J] —i(ihJ.)
=J>—J2+hJ.

Rearranging above expression gives J? = J? + J,J_ — hJ, which completes the proof. (|

7.3 Homework Three

7.3.1. Expand the matrix

DY) (a, B,7) = e~ i atm) (5 m/exp(_zgyﬁ) lj,m) .

Solution:
Clearly the order of matrix depends upon the value of j. The range of values for m are constrained by
the value of j. So for j = 1, the matrix becomes

1(1+cosB) —%sinﬂ 1(1—cospB)
dV(B) = % sin 8 cos 3 —% sin 3
3(1—cos ) %sinﬁ 3(1+ cos3)

O

7.3.2. (Sakurai 3.13) An angular-momentum eigenstate |j, m = Myqa, = J) is rotated by an infinitesimal
angle € about y-axis. Withoug using the explicit form of the dfi?zn function, obtain an expression for
the probability for a new rotated state to be found in the original state up to terms of order £2
Solution:

Let the given state be |a) = |4, j) The rotation operator thorugh Y axis is

—iJ,e iJ,e  Jie?
Dy(5)—eXP( ’ >—1 7;; - thz
Writing J,, = 5 (J4+ — J_) and expanding out the expression we get
2
Dy(€) =1- @J_FJ_

So the rotetaed state is

2

) g = Dy(e) o) =1 - —

]K2 J+J* |JJ>

The probability of finding the rotated state in the original state is given by |{a|a) R|2 calculating thi

2 2

2
= jwm — gz Wl J-1id)

2 2-2 2.
- ’1—«/2]'71\/2]'71‘ - ’1—643’ z1—%7

52

]h2 J—‘r‘]— |.7j>

[(@la)gl” = | (i1~
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This is the required probability in the order of 2. ]

7.3.3. (Sakurai 3.16) Show that the orbital angular-momentum operator L commutes with both the opera-
tors p? and x>
Solution:
The commutator of each component of L with p? are

[L..p*] = [zpy — ypa. P + P) + 2]
= [zpy, 3] — [ype. P}

(0, L0
= (zﬁ on m) Dy (m apym,) Pz

= Qiﬁ[px, py]
=0

Similarly we can show that this is true for every component of the L hence it is proved for [L, p2].

Now for the commutation of x? witht he operator L

[L.,x*] = [xpy — ypas P2 + D) + D]
= [zpy,p}] — [ype, P2]
N AP U G
—x( zhayy> y( zhaxm>
=0

Sincce this is true for the L, component it is also true for every toehr comopnent so that the vector
commutatior [L,X2]

]

7.3.4. (Sakurai eq 3.6.11) Prove the following
(a)
(@'|Ly|a) = —ih —sin(/b2 — cot 6 cos ¢2 (x'|c)
el 06 0¢
(b)
0

(@'|Ly|o) = —ih (cos ¢% - cot@sin¢6¢> (x|a)

()

M2y — g2 | L9 L o DN
@mmFiﬁmmW+mwemw (@)

Solution:
The angular momentum operator is defined as

L=rXxP=rx(—ihV)=(—ih)r xV

These vectors in sperical coordinate system are

r=rf+00+ddp V=r10
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So teh corss product is

= (—il)r x V =

r

%a‘mﬁ L34
3=
%‘Q} > D

rsind 0¢
Now the cartesian unit vectors in the spherical unit vectors are

A

X = f‘sm@cosq5+9cos9cos¢ ¢51n¢
§ = Fsinfsing + fcosfsing + dsin

Thus the angular momentum operator in the L, direction becomes
L, =% -L = (—ih) —sm¢6 COS(bcotG
v B 00 0¢
Thus

(x|Ly|a) = —(—ih) (— Slnqbaae cos¢c0t93¢> (x|ar)

Similarly the operator L, is

Ao 0 0
L,=y L= (-ih) (cosqbt9 — 51n¢cot98¢>
Thus

(x|Lyle) = —(—ih) < cos gf)% sin ¢ cot 0%) (x|a)

Also the angular momentum squared opeator becomes

vorne o (551t )] o0 (55 -1kt

2 2
h{@ 0 16]

9L L~ Y
967 T %0 T GnZa 042

= —h? L 9 s1n6’2 +Li2
B sin 6 00 00 sin? 0 0¢?

Thus we can write

1 0 0 1 02
<$|L2|O[> = —h2 |:Sn,1080 (mnﬂag) + SIHQQW:l <:L'|alpha>

These are the required operator representation in spherical coordinate system. O

7.4 Homework Four

7.4.1. (Sakurai 3.18) A particle in a spherically symmetrical potential is known to be in an eigenstat of L?
and L, with eigenvalues h%l(l + 1) and mh, respectively. Prove that the expectation values between
|lm) states satisfy

[l(l +1)h% — m2h2]

2

(Lo) = (Ly) =0, (L3) = (L;) =
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7.4.2.

Intrepret the result semiclassically.

Solution:

Since the definition of the operators L+ = L, + L, these relations can be rearranged in to the oprators
the operators

L L_ L, —L_
A R
2 24
The expectation value of operator L, is
L L_
(Lo) = (iml|Lylim) = (im| === {im)

2
1 1

5 (Im|Ly|lm) + 3 (Im|L_|lm)

1 1

3 (Im|Cyllm+ 1) + 3 (Im|C_Jlm + 1)

=0+0=0
Similarly for L, the expectation value is zero. The L2 opeartor can be expanded into
12— [L+ +L} {L+ + L]

* 2 2
1
= (A + L L+ L Ly +17)

But the expectattion value of L2+ and L2 are both zero because they raise and lower the state ket twice
which are othognoal to each other.

Now the expectation value reduces to
PSR
But
LiL_+L_Ly=L}—iL,Ly+iLyLy+ L)+ L} +iLyLy —iLyLy + Ly =2(L2 + L}) = 2(L* — L2)
Using this to find the expectation value of L2 we get
(12) = (LoD + L Ly) = 3 (L2~ I3) = 2 (I + 1) + Wm)

Similarly the expectatin value of LZ is same as for L2 and they are arequal. (|

(Sakurai 3.19) Suppose a half-integer lvalue, say %, were allowed for orbital angular momentum.
From

LiYiy21/2(0,6) =0

we may deduce, as usual
Y1/2,1/2(0,¢) ¢*/2\/sin 6

Now try to construct Y7 /2 _1/2(0, ¢) by (a) applying L_ to Y] 2.1 /2(6,¢); and (b) using L_Y7 5 _1,2(0,¢) =
0. Show that the two procedures lead to contradictory result.

Solution:

Applying L_ on the given state Y} /51,2 we get

Y1/2,-1/2(0,¢) = —ihe” i (Zga — cot 0) e?/2\/sin 0

, 1 cosf
= ilie " (=1)e /22 —|— ihcot 60— e“z’/Z\/smﬁ
2 /si

I

|
>t
i
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7.4.3.

checking to see if L_Y 9 _1/2(0,¢) =0

_ 0 0 , cos
L_ Yo 0,¢) = —ih i (_ — _coth > —ip/2 Y p
1/2, 1/2( ) the i 7 co e = 9( )

, i 1 2 ) 1 )
= ih2e (—i (— sin 6 - i ) e /2 _ ot f (—z’2> e */2\/sin 9)

Vsind  2+/sin® 6

) 1 1
= h2e31¢/2 (m [—2 sin? 6 — cos® 0 + 3 sin 29])

187

The last expression is not zero which contradicts our proposition that tere exists a half integer [—value.

O

(Sakurai 3.20) Consider an orbital angular-moemntum eigenstate |l = 2,m = 0). Suppose this sate
is rotated by anangle 8 about y—axis. Find the probability for the new state to be found in m = 0,+£1

and £2. (The spherical harmonics for [ = 0,1 and 2 may be useful).
Solution:

Let the arbitrary state be |P) = [l =2;m = 0) the state kaet in the rotated system is |P)p

D(0,3,0) | P) This reotaed state can be calculated as

D(0,5,0)|[P) =Y [l = 2;m')(I = 2;m/| D(0, 8,0) [l = 2,m = 0)

m/’

== 2m) DL 0,8.0) = Y11 = 2 [Ty (5.0

m’

Thus the probability of finding the rotated state same as the original stae is
4 4
Z<z_2m_ou_2m>,/7r 3,0 ’\/ ym(8,0)

m/
This is the required probability of finding the rotated state in original state.

| (P|Dg|P)* =

Now for m = 0 we have Y29 = y/15=(3cos? B — 1) this gives the probability (3 cos? 8 —1)2.

For m = £1 we have Y5 11 = 1/;—;?(sinﬁcos B) this gives the probability %sin2 Bcos? .

For m = £2 we have Y3 19 = 4/ 312577 (sin? B) this gives the probability g 3 sin 5.
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Statistical Mechanics 11

8.1 Homework One

8.1.1. Evaluate the density matrix ¢ of an electron in a magnetic field in the representation that makes &
diagonal. Next, show that the value of {c), resulting from this representation, is precisely the same as
the one obtained in class.

Solution:
The pauli spin operator o, is diagonal in the representation where the basis states are eivenstates of
S, operator. In S, representation the S, states are given by

1
7 () £1-))

The transformation operator that takes from S, representation to .S, representation is given by operator

U = [Sz; +)X+| + [Sz; =X~

|Se; £) =

So the matrix representation of this operator is

o-[813 -

The operator in the new basis can be obtained from the old basis with the transformation.
111 111 o1 1 110 -1
R a [ —
ever=s Ll S0 A)-a S
The Hamiltonian of the system in new basis is
H =uB- o' = —uB.o.,

The density operator in cannonical ensemble is given by

/ 6767‘[
0 = ———— 1
¢ Ty (e=PH) (8.1)
Carrying out the taylor expansion of the numerator in the density operator
, , Bz / Bz 1\2 Bz 7\3 Bz /)4
67['37-[ _ eﬁszaz =1+ ﬁﬂ 0, + (ﬁ,u Uz) + (B,LL Jz) (/Bﬂ Jz)
1 2! 3! 4!
_ [, (BuB.)* | (BuB.)* , [BuB: | (BuB.)®
= |1+ 20 + o + ... +o, 1 + 30 +...
= cosh(BuB,) + o, sinh(BuB,) (8.2)

188
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12n+1
JZ

where we have used the fact that 0’2" = 1; =0, for all n in {0,1,...} Also we have

Tr(l) =2 Tr(ol) =0
So taking trace of Eq. (?77) we get

Tr(e_’BH/) = Tr(cosh(BuB,) + o, sinh(BuB,)) = cosh(BuB.)Tr(1) + sinh(BuB,)Tr(c”,) = 2 cosh(BuB.)

So the density operator (8.1) becomes

o, cosh(BuB;) + o, Sinh(/B,UBz) 1
= = h(5uB
¢ 2 cosh(BuB;) ) + 202 tanh(Bp.B:)

Now the expectation value of operator o, for the

(o)) = Tr(po)) = Tr <;UZ + %af tanh(BuBZ)> =Tr (;O’z + ;tanh(ﬂ,uBz)) = tanh(BuB.)

This gives the expectation value of the operator. This expression is the same as the one we obtained
using the basis states where o, was diagonal instead of o, that we have here. |

8.1.2. Derive the uncertainties, Az, Ap and AFE, of a free particle in 3D box using the density matrix expression
in the coordinate representation. Then calculate the uncertainty product Az - Ap.
Solution:
For a particle in a box the the density matrix is given by

1
(rlo|r'y = v exp[ 2;;22 lr—7r' 2]
The average position of the particle is given by
A~ ]- m 2 3 3
<r>:Tr(rg):—/ exp[rr'| :|T d’r=-R

14 28h? - 4
The average squared position is given by

1

(r?)y = Tr(r’p) = V/ exp [—2;;12|r - r'|2} r? d*r = - R?

So the uncertainity in the position of particle is given by

=V w2 =1 2n

Now the average value of momentum is given by

e

The average momentum squared is

h2 ,
< > Trpg /‘8r2 [257”12“’7’2}

h
d*r = —iy; /Odsr =0

’
r=r

d3r = 3mkT

r=r’
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8.1.3.

Again the uncertainity in momentum is given by

Ap =/ (p*) — (p)* = V3mET

ArAp:Z1)m?HR

So the uncertainity product is

This gives the uncertainity product in position and momentum. O
Prove that
_B’H / . a /
(qle™""|q") = exp| —fH —ihga)|0a—d),
where

0
H <—zh6q, q>
is the Hamiltonian of the system in the g-representation, which formally operates upon the Dirac delta
function, d(¢ — ¢’). Write d-function is a suitable form; apply this result to a free particle.
Solution:

let ¥n,(¢) = (n|g) be energy eigenfunction with eigenvalue F, in configuration space gq. Then by
schrodingers equation we have

0
H(—ih%,q)¢n(q/) = Enthn(q')
Since we know that for operators Ay(z) = Ap(x) = f(A)p(z) = f(N)o(x)

— —ih 2 _
e PNy, (¢) = e PP (q)

This can be used to write

(ale™"qy = 3" qln) (nle™""|¢') (Insertmg > n><n|>
> n(@)e PPrpr(d)
= M) S g (@) (d)

But since the the eigenfunctions of the Hamiltonian are orthogonal to each other we get >~ ¥*(¢')¥(q) =
5(q—¢q') we get

—ih-2
(glePM|¢) = M D5(g — o) (8.3)

This is the required expression for the matrix element of the dnesity operator e #%.

We can also write the d—function using the fourier transform representaation of )—function as

3 oo
Sg—¢')= (2177> / ethla=d) g, (8.4)
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For a free particle the Hamiltonian can be written as
e 292

L0
H(—Zh%,q) ~om  2mog? (8.5)

Now using (8.5) and (8.4) this in (8.3) we get

oo

3
(qle="™|q') = (;) / M50 ik(a=d') g,
s
—o0
3 oo
(&) [
s
This can be solved by completing the square in the exponential and using the gamma function the final
result is
3
oy = (T e ()
ale ) = (55 ) e
This is the matrix element of the density operator for the free particle in a box. (|

8.1.4. Derive the density matrix p for a free particle in the momentum representation and study its main
properties, such as the average energy, momentum.
Solution:
The Hamiltonian of the free particle in moementum representation is

]32

T 2m

Let |¢) be the momentum wavefunction of the particle then the expression for the momentum wave-
function is

Yr(r) = %ei’”

Since the momentum eigenfunctions make complete set of states they are orthonormal
(Vrlvr) = Orp

Now the cannonical partition function of the system is
Q(V,T) = Tre PH
= 37 (hule M )
k

3R2 | 2
= E @7[27m’C
k
Since the states are very close in momentum sapce we can replace the sum by integral

_Vv B2y
QV.T) = W/dKe

Vv 2mm 3
- (2n)? <Bh2>
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8.1.5.

The matrix element of this operator now become

R A3 _BnrZ% ;2
(Vrlolyr) = 7e 2 STy
Ths is the requried density matrix representation in momentum sapce. O

We showed in class that linearly polarized light corresponds to apure state and non-polarized light is in
a mixed state. What is the circularly polarized, a mixed state or a pure state? Verify your statement
Solution:

Polarized light must be pure state because, at any given time it only has components The two plane

polarized components x be represented by A a and y plane polarized be represented by [ﬂ . The

1
0
most general polarization of the light can be written as the linear combination of these two plane

pOlarized COIlpOIlenlS as
1 601 O 10
chn =a [ e + e 2

where a and b in general are complex numbers. For a circularly polarize. If the two plane polarized
components have a total phase difference of nm then the light is plane polarized. But for the phase
difference 0 = 0 — 01 = (2n + 1) % the light is circularly polarized. Let the phase 61 = 0 and 6, = 7/2
such the phase difference is 7/2 we get

1 |1 vt |0
Pcircu ar — ~ = + —
G M V2 H

Now for this representation, the density matrix can be obtained easily as

o=l Wl -[

This prepresents a pure state as

#=[ifa Vel el =i Ve =e

This verifies that the circularly polarized light is pure state. (|

8.2 Homework Two

8.2.1.

We mentioned in class that in calculating the matrix of e %%, (1,2,3, N|e=#%|1,2,3, N), permutation
goth the particle coordinates in the first wave function and energy states in the second yields a result
which is N! of the result for a fixed set of {k, } states that is, without permuting the energy states. Do
it explicitly of two particle and two state case starting with wug(1)up(2).

Solution:

The general matrix element for N particle n state system from Pathria eq (5.5.12) is

Bh2 K2

— / 1 — * *
(Lo NPV, N = 3 e Zép{uh(pl)...ukn}]...lzép{uh(pl)...ukn}
Tk p p

For two particle and two sate we get

BR2 K2

<172\6_6H|1’»2'>=%26_ 7 [ua (up(2) + v (2)up(1)] [ug (1ug (2) £ ug (2)uy (1)]
ok
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Multiplying the wavefunctions we get

(120 10,20 = 203 e 5 T (2 (105 (2) (D (2 (D (2)

+ o (D)un(2)ug (1)ug (2) £ e (L)un(2)ug (1)ug (2)]

For the case of fixed {k;}, i.e., if only the particles are permuted

(1,201, 2) = 557 e 5 fua (Vo2 (1) (2) % (1) (2)u (1) (2)]

But since the density operator is hermition, the matrix elements are equal to the complex conjugate of
itself with the coordinate exchanged

(1,20 P17, 2) = (1,2]e %2/, 1)

This would essentially mean

(L2fe™1,2) = % e o Jua(Dup(2) % ua (2)us(1)] [uf (1uj (2) £ ug (2)ug (1)

= 57 e [ug (Dun(2)ul (1) (2) + (1w (2)s (1)1 (2)]
k

Here the last expression is exactly twice the expression for fixed {k;}case. Where 2 is equal to the
factorial of itself 2! = 2 thus the rusult is N! times the expression for fixed {k;} case. O

8.2.2. Study the density matrix and the partition function of a system of free particles, using un symmetrized
wave function instead of symmetried wave function. Show that, following the text procedure, on
encounters neighter th Gibbs’ correction factor % nor a spatial correlation among the particles.
Solution:

If we used unsymmetrized wave function rather than symmetrized wave function we get

Jey s k2

(172,...7N\e_BH|1,2,...,N>:Ze 2 (e (1) - g, (N)) (i, (1) . uj (N'))

Z el k1+2m+kN (ks (1) - g, () (i, 1y.. UL (N"))
ky,...

The summation in the exponential can now be changed into product of the exponential and the ex-
pression becomes

1 [emomr2m Ly Gy, ()}
i=1

Since the states are dense we can change the summation over k; by the integration

3N

_ m S m
<172,...7N‘6 BH|1,2,,N> = (W) eXp(-QBh2 (|7”1 _7"/2|2+ ‘TN _7’;\7|2))
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8.2.3.

From this expression its easy to calculate the diagonal elements, because for diagonal elements we have
r; = r;. This makes the exponential identically equal to zero and we get the matrix element

3N
2

(1,2,...,Nle”""|1,2,... ,N) = < = )

2m3h?
[ m
A= 2 3h?

3N
(1,2,...,NleP"|1,2,...,N) = ()

Using the wavelength parameter

we get the Matrix element as

Now the cannonical partition function is just the trace of this expression

avn-niem- (1) e (5

This expression has neigher the gibbs correction factor % nor the spatial correction factor. O

Determine the values of the degeneracy discriminant nA3 for hydrogen, helium and oxygen at NTP.
Make an estimate of the respectivey temperature ranges where the magnitues of this quantity becomes
coparamble to unity and hence quantum effects become important.
Solution:
The quantity nA? can be written in terms of temperature and boltzman constant as
3 3 3
pd o N b = i (8.6)
(2rmkT)3/2  V (2emkT)3/2  (27mm)3/2(kT)5/2

For standard temperature and pressure

T = 293KandP = 1.01 x 10°
Using the mass of Hiydrogen, Helium and Oxygen we get

6.63 x 10341.01 x 10°
Hy :n)\3 = =2.86x107°
25T 9 (167 x 10-27)3/2(1.38 x 10-23 x 293)5/2 x

6.63 x 10-341.01 x 10°
Hey :n)\® = =3.61x107°
2T 50(6.64 x 10-27)3/2(1.38 x 10-23 x 293)5/2 x

6.63 x 107311.01 x 10°
Oy :n\? = =478 x 1077
2 T Or(25.6 x 10-27)3/2(1.38 x 10-23 x 203)5/2 x

INverting the relation (8.6) and setting nA\® ~ 1 we get

- 1 ( L6 p2 )1/5
K \ (2rm)3
So for the different masses of H2, He2 and O2 we get
Hy: T =4.46K
Hey : T =1.95K
Oy : T =0.868K
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This give the temperature in which the discriminant is close to 1. O

8.2.4. A system consists of three particles, each of which has three possible quantum states, which energy 0
, 2F, or 5F respectively. Write out the complete expression of the cannonical partition function @ for
this system:

(a) if the articles obey Maxwells-Boltzman statistics.

Solution:
The single particle cannonical parition function for

QiV.T) = e B =147 47

The cannonical partition function for N distinguishable particles is obtained by Qn(V,T) =
7 [Q1(V, )™ So for three particles we get

Qs(V.T) = % [1+e72° + e*5ﬁ]3
The free energy of the system is
F=kTnQ=kTIn (é [1+e29F ¢ 65BE]3> — KTInG6 4 3kTIn (1 + e2PF 4 0P
The entropy is given by

oF
5=- (aT>N,V

Tk 6Ee7% 15Ee7%
T2k + T2k
= —5 —5 + kln
14+e 7Tk +e Tk 6

This gives the expression for the entropy of the particles. O

(b) if they obey Bose-Einstein statistics,

Solution:
For bose einstein case, the particle sare counted indistinguishable. So each of the three particle

can belong to following energy state So the total partition function of the system becomes

n0,nl,n2 ‘5,0,2 55,2 55,0 5,22 022 500 020 555 222 0,00
Total Energy‘ E 12E  10E 9E 4E 5E 2E 15 E 6E 0

Qn(T,V)=1+ e 2EB 4 oTAEB | o7SEB | omOEB | o—TEB | om9EB | o—10ES | —12B8 | —15ES
Similarly the free energy is given by F = kT InQn(V,T) and the entropy is given by S = fg—g
This gives the expression for the entropy of the particles. O

(c) if they obey Fermi-Dirac statistics,
Solution:
For the particle satisfying Fermi-Dirac statistics no two particles can occupy the same energy levels

so each has to sit on its own energy leven which gives the partition function

QN(V,T) = [L + e 2PF 4 ¢5°F]
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The free energy of the system is
F = Tklog (1 v H 4 e—%)

So the entropy becomes

oF E (2¢*58 + 5)
= —-— = — _kl 1 —2Ep —5EpB
S 5T T (558 § 357 1 1) og(l+e + e PP

This gives the entropy of particles for Fermi-Dirac statistics. ]

8.3 Homework Three

8.3.1. (Pathria and Beale 6.1) Show that the entropy of an ideal gas in thermal equilibrium is given by
the formula

S=k> [(ne+1)In(nc +1) = (n:) In (n)]

in the case of bosons and by the formula

- k’Z (1 =n)In(l—mn) — (n.)In(n.)]

in the case of fermions. Verify that these results are consistent with the general formula

_ —kz{zpe Vnp. (o }

where p.(n) is the probability that there are exactly n particles in the energy stare €.
Solution:
The general form of entropy of of the system is given by

S:KZ{nfln@f})Jf(”f %)hl( ngsﬂ

where, n} is the set confirming to most probable distribution among the cells. With the degeneracy
factor g; = 1, we get % = n; Also the average n. is given by

(ne) =2 8q Z%an
0z z=le=Be 4 ¢

Substituting n = (n.) we get
. kz { (ne)In (n2) + (<n€> - i) In(1— a<n5>)]

Now for bosons a = —1, we get

S = kz (ne)In (nz) + ((ne) + 1) In (1 + (ne))]

Which is the required expression for the bosons. Now for fermions we substitute a = 1 and obtain To
show that the general expression
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8.3.2.

S .
works for the entropy we first notice that the expression can be modified rewritten as

S =k (lnpa(n)

Also for bosons the probability of having exactly n particle in the state with energy ¢ is given by

<n5>n

(n) = 8.7
Inp.(n) =nln(n.) — (1 +n)ln((ne) +1) (8.8)
Now substituting this to the general expression of entropy the inner summ over all n becomes
S——k‘z (nln(n.) — (1 +n)in ((ne) + 1))
= —kz ne) In(ne) — (14 (ne))ln ((ne) + 1)
—k‘z (ne)In{ng) + ((ne) + 1) In (1 + (ne))]
which shows that the general expression is true for bosons.
Substituting a = 1 for fermions we get
= kz ns ln ns + (<TL€> - 1) In (1 - <ns>)}
Which is the required expression for the fermions entropy.
The probability of faving exactly n = {0,1} particles in the cell for fermoins is given by
_J1—(n.) ifn=0
This gives only two terms in the inner sum of the general expression so
S= _kZ [(ne) In(ne) + (1 = (ne) In(1 — (n.)))]
€
Which shows that the general expression holds for fermions too. |

(Pathria and Beale 6.2) Derive for all three statistics, the relevant expressions for the quantity

9 (ne)
n2) — (n. 2=kT<E>
() (ocf? =ar (2}
Compare with the previous results that we showed in class,
9 (n)
n?) — = kT ( >
(n®) — (n)” o).

for a system embedded in a grand canonical ensemble.
Solution:
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This problem is the find the first and second moments of n. and their difference. Once we know the
probability mass function (pmf) of the variable finding moment quite generally is

(f(@)) = fl@)p(@)

where p(z) is the pmf. Now for the bosons, (8.9) can be slightly rewritten as

S 2 A S 2 K U )
) = e = i - () (G

With substitution 15:2;5 =t we get

p(n) = (1 —t)t"

Now the first moment of this pmf is

oo

() =30l = " = (1= 5 = 7 B

n=0

Similarly the second moment is

2 S 2 n ! :
B

Thus the variance is

2 141 2t
(nz) = (ne)” = 1—02 (-2 (1—172

Now substuting back the value of ¢ we get
2 2
(n2) = (n)" = (ne) + (ne)

For the Fermions we get
1
(n2) =Y _n?pe(n) = p:(1) = (nc)
n=0

This implies tht the variance is

2 2
<n§> - <ns> = <TL5> - <na>
For Boltzmann particle the pmf is a poisson distribution

<n€>” e—(ne)

pe(n) = n!

)

(8.9)

For poisson distribution is it can be easily shown that the mean and variance is just the parameter (n.)

Thus we have
<n§> - <n€>2 = (ne)

Looking at each of these three variances we see that it is of the general from
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8.3.3.

8.3.4.

<n?> - <n8>2 = <n5> —a <”6>2

Also the expectation value (n.) is given by

1
z=lefe 4 ¢

(ne) =

Differentiating this with respect to p at constant temperature we get

5] e

Rearranging we get

xr|? éZ”]T — — (n) - a{ne)?

Now the comparision of this expression for all the statistics leads to

(n2) = n)? = 7 | Z0ed|

This expression is true in general for all statistics. (|

(K. Huang 8.6) What is the equilibrium ratio of ortho- to para-hydrogen at a temperature of 300 K?
What is this ratio in the limit of high temperature? Assume that the distance between the protons in
the molecule is 0.74 Angstrom.

Solution:

The equilibrium ratio is given by

Northo _ o S gq(2n + 1)em AR /20104 D)
Npara N Zn:even(Zn + 1)€_ﬁh2/21l(l+1)

Evaluating this sum explicitly with series method we get For large values of n the ratio go to one
because for large n the two quantities in Numerator and denomenator are essentially the same. So we
get

Northo -3
Npara
This gives the equilibrium ratio of ortho and para hydrogen in the temperature required. O

Consider the thermal properties of conducting electrons in a metal and treat electrons as non-interacting
particles, when particle density is high. Assuming each Cu atom donates an electron to the conducting
electron gas, calculate the chemical potential, or the Fermi energy, of copper, for which the mass density
is 0%3' Express your answer in Kelvin.

Solution:

The fermi energy is given by

2
E—h2 3N\ 3
f_8m %
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For Cu the density of atoms is
n=285x 10%m3

Thus we get the fermi energy equal to

b B (3NNT _ (66x 1072 (3
T78m\7V) ~ 8x91x1073 \x

In kelvin this is equivalent to 6.7eV = 6.4 x 10K

8.4 Homework Four

2
-3
8.5 X 1028> =11x107® =6.7¢V

200

8.4.1. Derive the virial expansion of the ideal Bose gas by inverting the relation nA* = gs/5(2) series to
express z in terms of nAcb and the substitute it in the P/KT equation. Using this expression derive

the expansion for C,/Nk valid at high temperature limit.
Solution:
For high temperature Ny < N the relation can be written as

2 2’3

3 _ _
To invert the series with usual technique we write the z as a power series in nA3 as

2= cl(n)\S) + C2(n)\3)2 + (33(71)\3)3 4+ ...

substuting the value of z into the first series we get

(cl (nA3) + cz(n)\3)2)2

nA? = [er(nA®) + ... + 5372

Comparing the coefficients of like powers of A in both sides we get

02 261 C2

c =1 C2+2_7§/2:0 CgﬁLm

Writing similarly we get

-1 1 1

61:1;62: C3

Now the expression In Q becomes

NET — nx3 9-5/2 " 3-5/2

PV 1 22 23
z+ + + ...

Substuting the value of z from the series in nA® with the various coefficeints 1, ¢ ... we get

PV & a3
NIT ~ 2 (u)

1=

2-3/2 T4 3732

+...

=0

This is the required virial expansion of the expression. Now for the specific heat at constant volume

we have to find out 2Y, this can be simplified as

oT>
Co _ 1 (9U\ _3[0 (PV
Nk Nk\dT )y, 20T \ Nk
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In similar fashion for the expansion of g5 /5(2) we get

C, 35-3 (V)“l
N3 a (X

Nk 2 2 v

=1

Substuting all the coefficient we get

Cv 7%
Nk 2

A3 A3 2
1+cl<)+@<> Lo
v v

where teh coefficients are ¢1 = 0.088, co = 0.0065, . .. This is the expression of specific heat of bose gas
correct at high temperature. O

8.4.2. (Pathria & Beale, 7.3) Combining equation 7.1.24 and 7.1.26, and making use of the first wo terms
of formula (D.9) in Appendix D, show that, as T approaches T, from above the parameter a(=In z) of
the ideal bose gas assumes the form

1 (3¢3/2)\ (T -T.\°
= (5 (57)
Solution:

We have from previous problem nA3 = g3/2(z). But at A = A we have z = 1. But for z = 1

1 1

Substuting this in the expression for the critical temperature and taking the ratio

T (A\? (gsp(x))

= () - (%9)
The expression for gs/3(z) can be expanded in termf os series the series expansion from appendix D.9
can be used to obtain

= ()

Since we have @ < 1 we can make use of binomial expansion of the series
(1+2)" =1+ nxz; <1
Using just the first two terms we get

T V
?zl—i—él&

3¢(3/2)

Now, this expression can be simplified further to get

1/ra = 3(3/2) (T;CT”)

Squaring both sides leds to

1 (3<<3/2>(T - TC>>2

T AT

This is the required expression. O
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8.4.3. Derive in detailed steps the following expression for an ideal Bose gas.

Co _ 15g52(2) _ 9g3/2(2)
Nk 4g3/2(2)  4g3/2(2)

Solution:
For ideal bose gas from 7.1.7 and 7.1.8 we get

P 1

T = ng/z(z)
N — Ny 1
v = F93/2(2)

At high temperature we can assume that z < 1 is very small and we can safely ignore Ny. We can take
the ratio of these two quantities to get

PV g5/2(2)

NET  g3/2(2)

Also the internal energy can be calculated as

_ 9 (9 (PV _3nV
g (3 (22~ Bt

Now the expression for the specific heat is
c, = ou _ 0 §T95/2(2)
oT oT \ 2 93/2 (Z) v

Now we can use the recurrance relation for the function g(z) as

= () = ga(2)

Also since the function g3/(2) is proportional to cube root of the square of the temperature we get

0 3
3793/2(3) . = —ﬁ%/z(z)
Combining these two expressions we get

170z __393/2@)
2z \ 0T v_ 2Tgl/2(z)

Now carrying out the differentiation of the expression C, we get

3g5/2(z) 0 (95/2(2’)> 0z
C,=Nk- + Nk -
93/2(2) or

2 g3/2(2) or

Using the previous expression for g—; and using the product rule in the differentiation we get

C, 3 {595/2(2) 3 393/2(2)]

Nk~ 2 293/2(2)  291/2(2)

Simplifying the expression gives

Cy §g5/2(2) _ 993/2(2)

Nk 4 93/2(2) 491/2(2)

This is the requred expression for the specific heat of bosons in high temperature limit. O
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8.4.4. Prove the following for and atomic Bose gas with spin S

(a) Tts density of state is given by:

2

2m 3/2
g(E) =2nV (25 +1) ( > EY?

Solution:
If we consider atomic non-interating atomic gas with spin S, then for each momentum state, there
are 25 + 1 spin states. Then the grand partition function becomes

Q — H Q?SJrl

The grand potential becomes

®=—kTlQ=FkT(25+1)> In (1 + e—ﬂ(e—u))

Approximating the sum with the integration we get

o0

® = kT(25 + 1) /m(l + e*ﬁ@*m“))g(E)dE
0

Here g(FE) is the density of states which cn be simplified for uniformaly distributed particles as

oy — ARS8+ Dk _ (25 + DVEdh
g - @r/L? o2

With volume V = L% and E = % we get

9(E)dE =

(28 + V)V VEdE [2m\*/*
wr o (#)

Using h = % and writing the density of states we get
3/2
g(E) =27V (2S + 1)\WE <>
Which is the required density of states. O

(b) Then show that its Bose-Enistein temperature is given by

h2 n 2/3
T, =
°~ 2mmk [2.612(25 ¥ 1)]

Solution:
Now the total number o particles N can be obtained as

_ [ 9(B)E
N_/eﬁ(gf:u){»l
0

Substuting the density function we get

3/27 %%
N = |27V (m) 1 VEIE

2z lePE — 1

0



CHAPTER 8. STATISTICAL MECHANICS II 204

The integrand can be recocnized as the einstein function gs/(2). so we get

25 + 1)V
N = %93/2(2)

For T' = T we can consider z comparable to unity, thus, we have z = 1, substuting this we get
g32(1) = ((3/2) = 2.612

nA3
=((3/2) =2.612
25+1 <B/2)
Making this substution and recocnizing A = [%]3/2 Rearrainging we get

_ h22 n
-~ mmk [2.612(25 + 1)

where we have made use of n = g This gives the expression for the critical temperature of Bose
gas. O



Chapter 9

Particle Physics

9.1 Homework One

9.1.1.

9.1.2.

(Griffith 1.2) The mass of Yukawa’s meson can be estimated as follows. When two protons in a
nucleus exchange a meson (mass m ), they must temporarily violate the conservation of energy by an
amount mc?( the rest energy of the meson). The Heisenberg uncertainty principle says that you may
’borrow’ an energy AF, provided you ’pay it back’ in a time At given by AEAt = g (where h = h/2m).
In this case, we need to borrow AE = mc? long enough for the meson to make it from one proton to
the other. It has to cross the nucleus ( size 7¢), and it travels, presumably, at some substantial fraction
of the peed of light, so , roughly speaking, At = “2. Putting all this together, we have

h
2rgc
Using 7o = 1 x 107 3cm, calculate the mass of Yukuwa’s meson. Express your answer in Mc ¢V and
compare the observed mass of mon.
Solution:

Given rg = 1 x 107 %m, M = 6.58 x 10722 MeVs; c = 3 x 1085 we can substitute to find the total mass

h he 1 MeV

So the predicted mass is 98.7MeV | but the real mass of Yukuwa’s meson is 138 Mev which is off by a
factor of about 1.4. |

(a) Members of baryon decuplet typically decay after 1 x 10723 seconds into a lighter baryon (from
the baryon octet) and a meson (from the pseudo-scalar meson octet). Thus for example, AT+ —
pT + 7w, List all decay methods of this form for the A™, ¥** and Z*~. Remember that these
decays must conserve charge and strangeness( they are strong interactions).

Solution:
The decay has to satisfy the charge conservation and strangeness conservation. The possible decay
for each of these are:

AT S5n+7r and ¥ + K°
> sp+k% 2T 4+2% T4 294%% A4nt; KH4E°
= 50+ K 2 44% Y4+ K% A+K; El4a = +n

These are all the possible decay schemes that preserve charge and strangeness. O

205
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(b) In any decay, there must be sufficient mass in the original particle to cover the masses of the decay

products. (There may be more than enough; the extra will be ’soaked up’ in the form of kinetic
energy int the final state.) Check each of the decay you proposed in part (9.1.2) to see which ones
meet this criterion. The others are kinematically forbidden.

Solution:

Each of these decays are two body decays of the form A — B + C, the threshold energies in each

can be calculated with
M? —m% —m?

E= c
20M 4

Using the mass value of each of these products we find that the only allowed decays are

AT w71 +n
¥ 2t 4 70 A+7t; YO 4
SR Y N 2"+
These are the only allowed decays. O

9.1.3. (Griffith 2.5)

(a) Which decay do you think would be more likely,

ET s A+7 or E—sn+7m

Solution:
Although the decay =~ — n—+n~ is favored kinematically over the decay =~ — A+n~ strangeness

u u
T T
W d W d
= { > 5 ha0 = fN?j? g
(@) 2~ 571 +A (b) 2~ 571 +n

Figure 9.1: Feynman diagram for two different decays.

conservation favors the second one. Since the two s quarks have to be conserved (strangeness con-
servation); an extra W~ is requires. This means there are two extra weak vertices. Higher number
of vertices would make the process much more less likely. O

Which decay of D%(ct1) meson is most likely
D' 5K 47xtor D’ 57 +7t, or D - KT + 7~

Which is least likely? Draw the Feynman diagrams, explain your answer and check the experi-
mental data.

Solution:

The Feynman diagram for D° — K~ + 77" is ]
The second decay is more favored because there is no generation cross over in the particle decay.
When there is a generation cross over in the decay process it is less favored in the decay although
it is allowed kinematically. So the most favored decay process is D* — 7~ + 7.
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9.14.

9.1.6.

d d s
at ot K+
w u w u w u
DG > SYK- DG — 5  fre DG e Tne

(a) D* = 7T + K~ (b) D° —» = + 77 () D° -7~ + K+

Figure 9.2: Feynman diagram for three different decay schemes for DV.

(Griffith 3.13) Is p* timelike, spacelike, or lightlike for a (real) particle of mass m ? How about a
massless particle? How about a virtual particle?

Solution:

To determine the nature of the particles we find the Lorentz scalar for each. Finding p* = p-p = p"p,
we get

For a real particle with mass m the quantity p?> > 0 so the particle is timelike. For a massless particle
7 the scalar p? = 0 so this is lightlike. And for virtual particle the nature depends upon the mass as
there could be massless and massive virtual particles. O

. (Griffith 3.16) Particle A( Energy E ) hits particle B (at rest), producing C;,Cs,...A + B —

Cy + Cy + ...C,. Calculate the threshold( i.e., minimum E ) for this reaction, in terms of various
particle masses.

Solution:

In the lab frame lets consider particle A with mass m4 and momentum p, with energy E strikes a
stationary target particle B with mass mp. The four momentum of A is p} = (E,p,) and the four
momentum of B is ply = (my,0). The invariant Lorentz scalar in the lab frame is

p* = (Pl +p})* = (E+mp,pa)* = B> +mp + 2Emp — py|”
But for particle A we have E? — |p A\Q = m? substituting this in above expression we get
p? =m% +m% +2Emp

Since this Lorentz scalar is invariant in any reference frame we have to have the same value for the p?
for the final products. For threshold condition the daughter particles are just created so thy do not
carry any momentum. Which implies for each particles their momentum m,, = E,, so for each of them
the four momentum is p# = (m,,0). The Lorentz scalar for the final gty is

p? = (P +ph + ) = (my+ma+ ... +mp, 02 = (my +ma+...+my,)? — 0= M? (say)

where the symbols M is used to mean the total sum of masses of all daughter particles. Equating the
Lorentz scalar we get

M? —m? +m¥%

M? =m% +m% + 2Emy - P =
2mB

This gives the threshold energy in lab frame of the incoming particle. O

(Griffith 3.22) Particle A, at rest, decays into three or more particles: A -+ B+C+ D+ ...

(a) Determine the maximum and minimum energies that B can have in such a decay, in terms of the
various masses.
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Solution:

The mimimum energy for the outgoing particle is equal to its mass when the produced particle
is just created and has no spatial momentum and all other energy is carried away by the other
outgoing particles.

Emin =mp

The maximum energy is carried by particle B when the particle A decays in such a way that
particle B moves in one direction and all other particles move in other direction in unison. Since
we would get maximum energy when the other particles do not move relative to each other giving
maximum energy, this implies that all other particle move as a single unit of total mass with the
sum of their masses. So we can rewrite the decy as

A—-B+(C+D..)=B+N

where the particle N is as it its a single particle with the mass equal to sum of masses of each of
the rest of daughter particles.

my =me+mp+...
This problem is now like a single particle decaying into two with equal and opposite momentum.
In the CM frame the value of Lorentz scalar p* = M3
pi = Plfg +pljtv = (mAao) = (EBapB) + (ENv 7pB)
= (ENa _pB) = (mAaO) - (EB7pB)
Squaring both sides and equating
(ENv _pB)2 = (mA70)2 + (EBv _pB)2 - 2(m1470> : (EvaB)
EX — |pg|* =m% + EL — |psl” — 2maEp

Since we have m? = E? — |p|* we get

m?\, = mi‘ +m2,3 —2maFEp
2maEp = m? +m% —m3
m? +m% — (mc +mp +...)?
2m 4

Ep =
This gives the maximum energy of the particle B. (]

Find the maximum and minimum electron energies in muon decay, = — e~ + Ve + V.
Solution:
The minimum energy of the electron is the mass of electron itself (in natural units of course) so

FEin = me = 511keV
By above discussion the maximum energy is

my +mZ- — (my, +mp,)?

Em' x =
* 2m,,

Since the neutrinos have very tiny mass (almost massless) we ignore their masses sow we have

1052 — 05112
B &~ = 52.50M
w N yesr MY

This gives the maximum mass of the outgoing muon. g
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9.2 Homework Two

9.2.1. Discuss the possible decay modes of the Q2 allowed by conservation laws, and show how weak deay is
the only remaining choice.
Solution:
There are three decay odes of Q7. They are

Q- =0 s
- +

SsS uss ud

Q- A° K~
— +

SSS uds us

Q- = 70

%

SsS dss uu

All of these processes violate the strangeness conservation. So they can’t proceed via strong interaction,
so weak interaction is the only choice. O

9.2.2. Determine which isospin states the following combination of particles can exist in

(a) nO0n— 70

Solution:
Using the clebsh Gordan coefficients to write the state composition we get.
|7t 7%) = |11) [1 — 1) |10)

1)1 — 1) = % 120) + % 110) + % 100)

20) [10) = \/§I30> - \FHO)
110) |10) = \[|20 \[mo

|00) |10) = |10)
So the possible iso spin combintaions are I = {0,1,2, 3} |
(b) 797970
|77~ =) = |10) |10) |10)

110) [10) = \[20 \[00

110) |00) = |10)

[20) [10) = \ﬁ30> - \ﬁ10>

So the possible isospin combintaions are I = {1, 3}

9.3 Homework Three

9.3.1. (Griffith 6.6) The 7° is a composite object (u# and dd ), and so equation 6.23 does not really apply.
But lets pretend that the ¥ is a true elementary particle and see how close we came. Unfortunately, we
don’t know the amplitude M; however it must have the dimensions of mass times velocity, and there is
only one mass and one velocity available. Moreover, the emission of each photon introduces a factor of
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9.3.2.

Va (the fine structure constant) into M, so the amplitude must be proportional to . On this basis,
estimate the lifetime of 7. Compare the experimental value.

Solution:

The decay rate for a particle decay is given by

- 85711113, M
Assuming the decay amplitude is M = am, we get
1 p 2 a?
= 3 8mhmz OMn)” = 1o P
The threshold energy of each outgoing photon is
E, = %mﬂ

We can use the fact that for photon |p7| = E,, so the outgoing momentum can be written as

1
‘pv‘ = g
Using this in the decay rate expression
r— a’my
327h

So the lifetime is given by the reciprocal of decay rate

327h
Lifetime(7) = 27”
a’my

Substuting o = %7 and mass of won is 135MeV we get

~ 327(6.58 x 10722)

135 - ==

=9.2x 10718

So the estimated lifetime is 8.4 x 107!®s. The mean lifetime from the particle data group listing' is
(8.30 £ 0.19) x 10~7s, which is off by about an order magnitude.

O

(Griffith 6.8) consider th case of elastic scattering, A+ B — A + B, in the lab frame, (B initially at
rest) assuming the target is so heavy mp > FE 4 that its recoil is negligible. Determine the differential
scattering cross section.

Solution:

In the CM frame, for two body scattering we have the differential scattering cross section is given by

da_<hc>2 SIMP* |py]
87 ) (Ea+ Ep)? |p

aQ
Since the target particle is very heavy, it is essentially at rest after the scattering. So the expression is

same for CM frame and lab frame. The energy and momentum of the incoming particle and outgoing
particle is essentially the same as the target particle doesn’t take any appreciable energy.

|Pf} = |p;]

Thttp://pdg.1bl.gov/2018/1istings/rpp2018-1ist-pi-zero.pdf


http://pdg.lbl.gov/2018/listings/rpp2018-list-pi-zero.pdf

CHAPTER 9. PARTICLE PHYSICS 211

9.3.3.

For the heavy particle, since it is essentially at rest, the energy is given by
Ef = |pp|* +m}
Which for |pg| = 0 gives
Ep =mp
Since given that F4 < mp we can approximate
Es+Ep=Es+mp~mp

Also the particles are not identical so the factor S = 1 Thus the final expression for the scattering is

given by
do <h0)2 IM[?
dQ 8t ) m%
This is the required expression for the differential cross section of recoil. O

(Griffith 6.9) Consider the collision 1 + 2 — 3+ 4 in the lab frame (2 at rest), with particles 3 and 4
massless. Obtain the formula for differential cross section.

Solution:

The expression for the differential cross section for the collision 1 +2 — 3+ 4 + ...+ n is given by?

Sh? - 1 &p;
do = |M\2(27r)454(p1+p2—pg—...—pn)XH P

4/ (p1 - p2)? — (mim2)? 2¢/p? + m? (2m)?

In the lab frame, with particle 2 at rest , we have

2
= |po|” +m3 =mj

Also for the expression under the square root is ,
p1 = (E1,py) p2 = (m2,0),= p1 - p2 = E1ma

This gives

V1 p2)? — (mama)? = \/Em3 — m?m3 = \/m3(E} — m?) = malp,|
Substuting these for n = 4 we get,

Sh?

do =
dp1mo

1)’ 2 d®psd>py
(> /\M| §(E1+ B> — |ps| — |pa]) x 6° (01 +p2 — p3 — pa) ———
4r 3 |pal

the delta function make the p4 integral trivial as

d3P3

do = i/|M|5E1+m2—|p3| 1wl

6472 |p; |ma
Assumming 3 particle scatters off at an angle 6 relative to the incident particle 1 we get
2 2
(p1 = p3)? = |p1|” + [Ps|” — 2|y ||ps| cos @

Also the volume element in the phase space d®p; can be written as

d* D3 = |P3| d\P3|dQ

2Griffith eq. 6.38
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Whore (2 is the solid angle. This enables us to write

oo

do Sh? 2 2 2
dﬁ:m IM[76 ( E1 +ma — |p3| —\/|p1|” + [P3]” — 2|py||p3| cos
0

2
|p3| d|p3|
2 2
231\ 1P + P3| — 2Ipy Iy cos 0

At this point all the momentum p are the spatial momentum vectors of each particles ( not to confuse
with earlier notation p; to mean four momentum), writing for each |p,| = p; and we have this integral
in p3 where p3 is independent of p;

o0
do Sh?
- m/\/\/ﬂ% <E1 + mo — p3 — \/p% +p3 — 2p1p30089)
0

p3dps
p3\/P? + P2 — 2p1p3 cos O

This is no easy integral to work out, but lets try, suppose x = p3++/p? + p3 — 2p1p3 cos 0 Differentiating
this with respect to p3 we get

dz p3 — p1 cos \/p%+p§f2p1pgcos9+p3—plcosﬂ T — p1cosf
do= L - T 2 T a2
P3 \/p1 + p35 — 2p1p3cosd \/p1 -+ p35 — 2p1p3 cosf \/p1 + p35 — 2p1p3 cosd
This gives
dps dx

\/pf +p§ — 2p1p3 cos b B x — p1cosf

Using this in the integral we get

o0

do Sh? 9

o __ o E _
) 647r2p1m2/|M| 0 (E1+mg —x)
0

psdx
x — pycosf

This integral however is trivial because of the delta function, as it only picks up the terms for x = Fy+mo
thus we get

do  SB? M2 D3
dQ n 647T2p1m2 E1 + mo — P1 cos

This can be simplified to write

do ([ h)? SIM|*ps
dQ  \ 87/ mapy (B +msa — p1cosf)

This is the expression of the scattering cross section. O

9.4 Homework Four

9.4.1. (Griffith 7.4) Show that uM u® are orthogonal, in a sense that uMfu(?) = 0. Likewise, show that
u® and u® are orthogonal. Are vV and u(® orthogonal?
Solution:
The bispinors u(?) and u(? are

1 0
0 1
1 2
IMCON B u® = | b i
E+m E+m
Pz —'Py Pz

E+4+m “E¥m
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Checking for orthogonality with u(MTu() we get

0
1t,,(2) . Pe—ipy 1
v <1 0 2% Frm ) pe—ipy
E+m
_ P
E+m
0404 Pz(pe — Zp2y) ~ pa(pe — zp2y)
(E +m) (E+m)
=0
Since the product uMTu(?) = 0 the two bispinors are orthogonal. Similarly the bispinors «(*) and ()
are
p1+ipy D
Ftm i
Dz Dy
u = | TE+m u® = _ | Brm
0 1
1 0

Checking for orthogonality with u(®Tu®) we get

Pz

E+m
(3)1,,(4) Pa+1ip, j2 Tﬂ
wu :—(W —Bfm 1) m
0
_ pe(pat ip;,) ~ pa(pe +ip2y) 41040
(E+m) (E+m)
=0
Since the product u®Tu(*) = 0 the two bispinors are orthogonal.
Now checking for the orthogonality of (") and u(®) we get
Pz —iDy
E+pm
D, (3) _ . = —ip, — BT
uMTy ) = (1 0 Eim pEJrn’iLy) %+m
1
Pz — 7:py Pz — ipy
S R ) Y )
E+m HO+0 E+m
_ 2ps
 E+4+m
Since the product uMTu3) £ 0 the two bispinors are not orthogonal. O

9.4.2. (Griffith 7.17)

(a) Express 4 as a linear combination of 1,7, y#, y#4% and o#*.
Solution:
The quantity o*” is defined s

14 Z’ v v
ot =5 (V" =) (9.1)
Also we know from the anti-commutation relation of the gamma matrices by definition
{7} =29
= Y+ =2¢" (9:2)
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Adding (9.1) and (9.2) we get

My =2(g"" —ic")
'YH'YV _ gpy — jotv
Here g is the Mankowski metric and is completely composed of numbers 1, —1 and 0. So this is
the required expression. 0

(b) Construct the matrices o'?, 0 and 023 and relate them to X!, 32, and 3.
Solution:
By definition
(7' =) (9-3)

o = % (Y'" =" o=

N | .

[V Y] =7 =4
. 0 g1 0 () . 0 g9 0 01
o —01 0 —02 0 —02 0 —01 0
_ —0109 0 _ —09201 0
B 0 —0109 0 —0201

N ([02601] [02?01]> - (2503 —2203)

Thus
12 troa 21 (o3 0) _ (3
et =7 )
Similarly
i
o183 — = (7173 _7371)
Y1, =1 — 4%
. 0 o1 0 o3\ 0 o3 0 o1
—01 0 —03 0 —03 0 —01 0
—0103 0 _ —0301 0
o 0 —0103 0 —0301
_ [03701] O _ 2’i0’2 0
a 0 [0'3,0'1] - 0 2@02
Thus
13_ %11 . 31_ (o2 0)_ <o
o =5[] = (0 Uz)— 2
Similarly
i
23 — = (7273 _ '7372)
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[v%7%] =29 =42
o 0 g2 0 g3 . 0 g3 0 g2
- —02 0 —03 0 —03 0 —02 0
o —09203 0 B —03092 0
B 0 —0903 0 —0302

- ([03602] [03?02]> - (2502 —2202)

7 o 0
o2 — 5[72773] _ (01 Ul) !

Here the commutation relation for the Pauli matrices [0, 0] = €;;,2i0% has been used. This gives
us the required relationship. O

Thus

9.4.3. (Griffith 11.4) As it stands Dirac Lagrangian treats ¢ and 1 asymmetrically. Some people prefer to
deal with them on an equal footing, using the modified Lagrangian

ihe - _ ~
L= [07(0u) = @) v] — (me®)iy
Apply the Euler-Lagrange equations to this £, and show that you get the Dirac equations and its
adjoint.
Solution:

The Euler Lagrange equation is for the Lagrangian density £(9,¢1,0u¢2, ..., $1,¢2,...) is

5 ( oL )_ oL
. a(au¢z) B 8¢z

For this modified Lagrangian we get

()5
"Now))  ov

N .h
0 (’; [—v%]) = 5 9] - me*
) .
5 [0 = 5 [ 0,0] = mey

ih (Y0,1) —mey =0 (9.4)

Similarly we get the other one with ¢

a( oL >_a£
"\o@u)) oy

0, (%5 [97]) =5 [-0,07#] ~ e

2 2
o ) - ) )
e ) = 2 a5 g
i (9, 09") + mep =0 (9.5)

We find out that (9.4) and (9.5) are the Dirac equations and its adjoint. Thus this Lagrangian also
gives the same Dirac equations. g
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9.4.4. (Griffith 11.20) Construct the Lagrangian for ABC' theory.
Solution:
Since the ABC model of particles are each scalar particle with spin 0, in free form, each can be described
with a Klein-Gordan Lagrangian. So we can obtain the total Lagrangian with free form part of Klein-
Gordan and interaction term. The free from Lagrangian is for each particle,if we assume the scalar
field ¢4, ¢p and ¢¢ respectively,

1 1

L= 3 PO  pa — §mi¢i
1 1

Lp = 50.050"6p — mpoH
1 1

Lo = 3 LW PcO pc — imzcﬁbzc

The interaction terms as in the model has the strength of —ig. So the interaction term is
Ling = —igpadpdc
So the final Lagrangian is
_ 1 14 1 2 42 1 o 1 2 42
L= 3 W Pa0" Pa — EmAQSA + 56u¢33 ¢B — 5m3¢>3
1 1 1 2 42 -
t50ubc0"bc — 5medc — igdadsdc

This is the required Lagrangian densitu for the ABC' toy model. ]



Chapter 10

Classical Electrodynamics

10.1 Homework One

10.1.1. (Jackson 1.1) Use Gauss’s theorem to prove the following:

(a)

Any excess charge placed on a conductor moust lie entirely on its surface. (A conductor by defi-
nition contains charges capable of moving freely under the action of applied electric fields.)
Solution:

Lets assume that the charge lies inside the volume of the conductor. Making a gaussian surface
that lies within a volume of conductor and encloses this assumed charge would imply there is finite
flux through this sufrace and hence electric field. But electric field inside a conductor is not pos-
sible because otherwise the charges would move and we would no longer have static equilibrium.
Thus by contradiction, there can be no charge inside the volume of conductor. (|

A closed, hollow conductor shields its interior from fields due to charges outside, but does not
shield its exterior from the fields due to thcarges placed inside it.

Solution:

Lets consider two cases, when there is charge inside the conductor and when there is charge outside
the conductor. In the first case if we take a gaussian surface that completely encloses the hollow
conductor, by gauss’s law we get finite electric field at any arbitrary point outside the hollow
conductor. Thus the conductor doesn’t shield the outside from electric field.

In the second case, when charge is outside. The flux through the gaussian surface enclosing the
conductor is zero as there is no charge inside. Since the electric field outside only induces the
charge on the surface of the conductor. There can’t be field inisde the hollow conductor. (|
The electric field at the surface of a conductor is normal to the surface and has a magnitude é
where o is the charge density per unit area on the surface.

Solution:

Let us assume an arbitrary gaussian surface parallel and very close to the surface of conductor.
In such a case the field at every point on the surface is equal and normal to the the plane of this
surface. Using gaussian law for this

/E.dA:E
A €0
pa- 24

€

— =2
€0

This shous that the electric field near the surface of conductor is normal to the surface and has

217
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magnitude of o/¢g.
O

10.1.2. (Jackson 1.3) Using the Dirac delta functions in the appropriate corrdinates, express the following
charge distributions as three-dimesional charge densities p(x)

(a)

In spherical coordinates, a charge () uniformaly distributed over a spherical shell of radious R.
Solution:

Since the total charge @ is uniformly distributed over the surface of shell, and the total surface
area of shell is 47 R? we have, total surface density given by

Q
47 R?

Now in the entire space, the only place this surface charge can be found is at the surface of sphere
of radious R thus the total charge density over all space becomes

@) = p(r,0,6) = 2sd(r — )

This gives the total charge density over all space if the charge is in spherical shell of radius R . O

In cylindrical coordinates, a charge A per unit lentgh uniformly distributed over a culindrical
surface of radious b.

Solution:

Let us consider a arbitrary length of the cylindrical surface [, with radius b. Now, the total surface
area of this arbitrary cylindrical section is V' = 27bl. The total surface density of charge is for
some charge @ is

Q@
27bl

The only place this charge can be found in all of space is for locations where r = b (in cylindrical
coordinate). Thus the total charge density over all aspace becomes

Q

A
= 727rbl(5(b —r)=-—90

" 2mh (b=)

p(:l:) = p(T, b, Z)

This gives the total charge density over all space if the charge is in cylindrical surface of radius
bof radius b provided the linear charge density is . O

In cylindrical coordinates, a charge @ spread uniformly over a flat circular disc of negligible
thickness and radius R.

Solution:

The total area of the circular disc is mR?. The surface charge density of for this disk is
@
mR2

. Now since the disk is negligible thickness the total only place where this charge resides in entire
space is where z = 0 and r < R. Thus the total volume charge density over entire space vbecomes

(&) = plr,6.2) = 23 5()H(r — B)

where H(xz) = 1 if 2 < 0,0 otherwise.
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(d)

The same as (10.1.2¢), but using spherical coordinates.

Solution:

From (10.1.2¢), we can make the change of coordinate as z = rcos(f). Substutin that in denta
function, and using the property fo denta function

1
0(az) = —d(x)
|
the total density becomes
plx) = p(r,¢,0) = i(5(7” cos)H(r — R) = il(5((:08 NOH(r — R)
o mR? TR2 7
where H(z) =1 if z < 0,0 otherwise. O

10.2 Homework Two

10.2.1. (Jackson 1.6) A simple capacitor is a device formed by two insulated conductors adjacent to each
other. If equal and opposite charges are placed on the conductors, there will be a certain difference of
potential between them. The ratio of the magnitude of the charge on one conductor to the magnitude
of the potential difference is called the capacitance. Using Gauss’ law, calculate the capacitance of

(a)

two large, flat, conducting sheets of area A, separated by small distance d

Solution:

Making a arbitrary Gaussian surface of area S near the surface and parallel to the surface of the
large sheet we find that the electric field near the surface is

.7

260
Since between the places both plates have the same field they add up to twice the value. Since
the field is uniform between the plates, the potential difference is simply the product of the field

and the separation thus we get

d
V=Ed=2x — xd="22
260 €0
Also the total charge in the entire surface is simply the product the charge density and its area
thus we get

qd q Ae
V = - = C = — = ——
AEQ %4 d
This gives the capacitance of the two large flat plates. (|

two concentric conducting spheres with radii a , b (b > a);
Solution:
For two conducting sphere, the electric field due to outer sphere in the space between two spheres
is zero. The only field is due to the charge on inner conductor. Constructing a spherical Gaussian
surface enclosing the inner sphere we find the total field in the region between the two spheres is
__Q .
T

4dmregr?

where a < r < b is the distance from the center of the spheres. Now the potential difference
between the spheres is the work done on unit charge moving from inner sphere to the out sphere
thus we have

Q QF 1} Q b—a

V= = -l =
4dmregr? " dmeg |a b 4meg ab
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The capacitance is now simply the ratio of @ and V' which is

Q ab
C=—==14
v AL
This gives the capacitance of spherical capacitor. O

(¢c) two concentric conducting cylinders of length L , large compared to their radii a , b (b > a).
Solution:
Similar to part (10.2.1b) we get no field inside the inner cylinder and outside the outer cylinder.
In the space between the two, only the inner cylinder contributes to the electric field. Again
with a cylindrical Gaussian surface bounding the inner cylinder we find that the field in the space
between those is

fE-dA:g — =9 g €@
€0 €0 2eqmLr

where a < r < b is the radial distance from the center of the cylinders. The potential difference
now is again the work done on unit charge which is

b

V= @ dr @ ln(b>

2¢qmLr - 2meq L a

a

The capacitance is by definition found by the ratio of @ to V;

C— Q _ 27T6(I))L
Vv In (E)
This gives the capacitance of cylindrical capacitor. |

(d) What is the inner diameter of the outer conductor in an air filled coaxial cable whose center
conductor is a cylindrical wire of diameter 1 and whose capacitance is 3 x 107! F/m? 3 x 10712
F/m.

10.2.2. (Jackson 2.1) A point charge of ¢ is brought to a position a distance d away from an infinite plane
conductor held at zero potential . Using the method of images, find:

(a) the surface-charge density induced on the plane, and plot it;
Solution:
The image charge for a point charge near the infinite conductor is behind the plane at a equal
distance and the charge is of equal magnitude and opposite sign. Thus the total potential due to
the image charge and the point charge (in polar coordinate system) is Using the cosine law, the
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different quantities in the given diagram can be written as

r? =12 — 2rdcosd + d?; —  r=+/1—2drcosf+ d?
r3 =r? — 2rd cos(m — 0) + d; — 1y =14 2drcosf+ d?

The potential at any general point P(r, ) is given by

o) = 7 | - - 2]

47'('6(] 1 T2

Since by gauss’s law near a conductor the surface charge density and the normal component of
the field are related by the equation

o
F=— — o=¢F
€0

we calculate the gradient of the potential and evaluate at its surface. The gradient is

oo, 100,
E=5"% 5"

Evaluating the radial and azimuthal component and evaluating at the surface which corresponds
to 8 = w/2 we get,

q —dcos(0) —r dcos () —r
E, = - -+ S| =0
dmeo (d? +2drcos (0) +72)2  (d?> —2drcos (0) +12) |,_ z
B g 1 drsin (0) drsin () 2qd
0= - =375
dmeo T (d2 + 2drcos (0) +r )% (d? — 2drcos (0) + 7'2)% o= dmeo(d? +12)3/2
Thus the total charge density is given by
oc=¢ekl = (2 +7‘2)3/2
This gives the required surface charge density. |

(b) the force between the charge and its image
Solution:
Since the image charge and the point charge are equal and opposite and magnitude and are a total
distance 2d apart we get the force by columns’ law as

B ¢ o e
4reg(2d)? 16mepd?
This is the required force. O
(c) the total force acting on the plane by integrating §— over the whole plane;
Solution:

Lets assume a small circular area element at a distance r from the center of the circle then the
area element is da = 2wrdr thus the total area integral over the whole area is

oo o0

a2 g 1 2
27rrdr = =t
47760 (r2 + d2 47‘(‘60 4d*  16mepd?
= 0

This gives the same force as in the previous part. O
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(d) the work necessary to remove the charge ¢ from its position to infinity;
Solution:
With the image charge at d from the surface we have to move the charge from d above the surface
to infinity, the total work done is given by

. 3 —g ; e 1 1 72

W = F == = — — = —

/ * / dreg(d + 2)? " 4meg { d+ z] d 8megd
z=d

This is the required work for the removal of charge to infinity. O

(e) the potential energy between the charge ¢ and its image.
Solution:
The total potential between the charge and image is simply the electric potential of two equal and
opposite point charge ¢ at a distance 2d thus we get
¢ ¢
4ren(2d)  Smeod

This is the potential between the charge. As required, this is exactly the same as we got in
(10.2.2d). O

V =

(f) Find the answer to part (10.2.2d) in electron volts for an electron originally one angstrom from
the surface.
Solution:
Ford=1x10"'" and ¢ = le — 19 and ¢y = 8.85 x 1072 we get

2

Vel —115%x10787 = 7.19¢V
8med
Thus the potential energy between the charges is 7.19eV . O

10.2.3. (Jackson 2.7) Consider a potential problem in the half-space defined by z > 0, with Dirichlet boundary
conditions on the plane z = 0 (and at infinity),

(a) Write down the appropriate Green function G(x,x’),
Solution:
Let there be a point charge ¢ ' = (p/,¢’,2’). For the potential to be zero at plane z = 0 we
assume a image charge —q at (p’,¢’, —2'). The green’s function is simply the potential due to
these point charge at a general location & = (p, ¢, 2)

1 1
G(IB,SC,) = E — g

where 7y is the distance of general point to the point charge and 7y is the distance from image
charge to the general point. We can calculate the distances as

ri=/(pcos¢ — p'cos )2 + (z — /)2 + (psing — psin¢')? = \/p? + p'2 — 2pp/ cos(¢ — ¢') + (= — 2')?
Similarly

re =P+ p% = 2pp cos(¢p — ¢') + (2 + 2')?

Since the choice of coordinate system is arbitrary due to azimuthal symmetry, we can choose ¢’ = 0
without loss of generality.

11 1 1
o2 |2 = 2ppcos b+ (2 — 22 \/p2+ p% —2pp cosp+ (2 + 2)?

This is the greens’ function. g
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(b) if the potential on the place z = 0 is specified to be ® = V inside a circle of radio’s a centered at
the origin, and ® = 0 outside that circle, Find integral expression for the potential ant he point
P specified in terms of cylindrical coordinates (p, ¢, z).
Solution:
The integral equation to solve for the potential is

1
 dweg

/G('J%m')/)(:v’)dvfi @(m’)%fq
14

4 J,

O(x) da’

Since we don’t have charge density inside the volume bounded by the cylinder p(x’) = 0 thus the
only remaining term is the second term. The outward normal on the surface of the cylinder can be
calculated. But since the potential at upper infinite plane is zero it has no contribution. Similarly
the sidewall of the cylinder do not contribute to the integral because the cylindrical wall have a
surface area infinity and the integral goes to zero. Thus the only contribution comes from base of
cylinder with radius a . On this face 2’ = 0 so we get

oG _[1 2(z—2") 1 2(z+2")
onl._y

+ —
2(p2+p2 = 2pp'cosd+ (2 —2/)2)3/2 2 (p? + p'2 = 2pp' cos ¢ + (2 +2)?)3/2 |

2z
(p% + p'2 — 2pp/ cos § + 22)3/2

Since the potential at that surface is ®(x’) =V we get

a 2
V 2z
P =— —=p'd¢'dp
A / / (p2 +p12 — 2pp’ COS¢+ZZ)5/2p ¢'dp
p'=0 ¢'=0

This is the required integral expression. |

(¢) Show that, along the axis of the circle (p = 0), the potential is given by

z
P=V(l-——e
( \/a2+z2>

Solution:
Solving at p = 0 we get

a a

2V 2 0 1 {1 1 } { z ]
Sr)=—"" 27 | ——Lorrdp =V | —mon| =Vz |- —m | =V |l - —
( ) 47 /(p/2—|—22)3/2 P /p/2+22 0 z 1/224,(12 ‘/2«'2+a2
Which is the required expression. O

10.3 Homework Three

10.3.1. (Jackson 2.13)

(a) Two halves of a long hollow conducting cylinder of inner radius b and separated by a small length-
wise gaps on each side, and are kept at different potentials V7 and V5. Show that the potential
inside is given by

VitVe Vi—Va [ 2bp
@(p’(ﬁ): 12 2+ lﬂ_ Qtan 1<b2_p2COS¢>

where ¢ is measured from a plane perpendicular to the plane through the gap.
Solution:
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The electric potential follows Poisson’s equation A2¢ = % since, in this particular problem there

is no charge in the space, it reduces to Laplace’s equation A?¢ = 0. Since the problem entails
cylindrical boundary conditions we look for solution of Laplace’s equation in cylindrical coordinate
system. Also, since the cylinder is long, the potential has no z dependence, we can essentially
solve the potential at the bottom plane of the cylinder z = 0 and this solution works for every z .
So the general solution of Laplace’s equation in polar coordinate system is

U(p, ¢) = (OO lnp =+ DO) + Z (An COs nd) + Bn sin ”¢)(Cnpn + anin)

Since we expect finite solution at p = 0, D, = 0 otherwise it p~" = oo which won’t satisfy
boundary condition. By similar arguments Cy = 0 as the solution has to be finite at p = 0 but
In p diverges at p = 0. So the solution reduces to, ( absorbing C,, into A,, and B,,)

u(p, ) = Do + Z[An cosng + B, sinng|p”

The boundary condition are, at the edge of the cylinder p = b, lets choose our coordinate system
such that the right half of the cylinder from ¢ = —%5 to ¢ = 7 is at potential V1 and the left half
p=75togp= 37” is at potential V5

ulb. ) — Vi if —Z<¢<i
Ve i Z<g<iE

Now at the edge of the

u(b, @) = Do + Z b"[A;, cosng + B, sinng]

n=1

Now the constant coefficient Dy can be easily calculated by integrating both sides as

37w/2 3m/2 3m/2
/ u(b, p)d¢p = / Dodo + Z b" / [A,, cosnd + By, sinng|de
/2 —n/2 L)

w/2 3n/2 3n/2 .
/u(b,¢)d¢+ / u(b, ¢)dep = / Dodg+ Yo" An/
—m/2 /2 —m/2 n=1 2

Vim4+ Vomr = Dg27 + 0
i+
2
Again the coefficients B,, and A,, can be calculated by using the fact that {sin¢}, and {cos¢},,

form an orthogonal set of function for integer set of n. Integrating the above expression by
multiplying by sinm¢ on both sides gives

Dy

37/2 37/2 0 3m/2
/ u(b, @) sinmaedp = Z "< A, ¢ sinm¢do + By, / sin n¢ sin mod¢
—m/2 " —m/2 —m/2

2
= Z Bnbn?ﬂ'a?nn = memﬂ-

37/2
= B,= 1 /u(b,gb)sinmqﬁdqﬁ

mh™
—m/2



CHAPTER 10. CLASSICAL ELECTRODYNAMICS 225

Similarly the coefficients A,,, can be calculated as

37/2
1
Ay = ——
m=— [ ulb,9)cosmodo
—m/2

Since in the given problem u(a, ¢) has different values for different ¢ we get

[ n/2 37m/2
A, = 71-1)% / u(b, ) cosmode + / u(b, ) cosmoded
/2 x/2
/2 3m/2
= 71-6% % / cosmaode + Vo / cos maodeo
—x/2 x/2

(2 (25

— g |- ()

Wirking out the integral for B,, leads to B,,, = 0 for all m. So the final solution becomes

Vi+Va = , 1 1—(=1)"
u(p, ¢) = 12 2+Zp W(Vg—Vg)i(n ) cosng

n=1

VitV vl—vzw(p ]
= + - Z cos ng

)” 1—-(=n"
2 = n
clearly the sum term is zero for even n, for odd n the expression is just 2/n. The closed form of
the sum gives the required expression

i+Ve V-V 2b
u(p, p) = 1;_ 2+ 171_ 2 arctan <b2 _Pp2 cosd))

This gives the potential everywhere inside the cylinder. O

(b) Calculate the surface-charge density of each half of the cylinder.

Solution:
The charge density can be simply found by finding the normal component of electric field at the
surface.
dulp, ®) Vi 15 0 <2pcos¢>
o(¢p) = eg————- =c — arctan
0= | =ty o

This derivative was evaluated by using sympy to obtain

0(¢)_6V1—V2 4b% - 2b - cos ¢ _€V1_‘/2 2 cos ¢ _6V1—V2

T 2t 2bhcos2¢ 0w b(1 + cos2¢) O7bcos ¢

For each halves we have the condition for ¢. Subsisting the value of ¢ for each halves gives the
charge density of each half. O

10.3.2. (Jackson 2.15)
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(a) Show that the green function G(zx,y,x/,y!) appropriate for Dirichlet boundary conditions for a
square two-dimensional region, 0 <z <1, 0 < y < 1, has an expansion

o0
G,y 2,9 =23 galy, ) sin(nmz) sin(nmar)
n=1
where g, (y,y!) satisfies

32
(W — n27r2) gn(y,y!) = —4md(y! —y) and  g,(y,0) = gn(y,1) =0

Solution:

The green’s function solution to non homogeneous differential equation Lh(z) = f(t) is a solution
to homogeneous part of the differential equation with the source part replaced as delta function
Lh(z) = 6(t — &). The obtained solution is G(t,§), ie., LG(t,E) = §(t — ). This solution
corresponds to the homogeneous part only as it is independent of any source term f(t). Let
G(t,€) be the solution to the differential equitation with the inhomogeneous part replaced by
delta function 6(¢ — £). The green’s function solution to Laplace’s equation is then:

H? oY
(5 + 30w ) Gt ot ) = ~tmilar = )51~ )

Since we have boundary condition that G(2' = 0) = 0 and G(z’ = 1) = 0 we take odd function
fourier expansion of the Green’s function

G(z,y;xt,yl) = i fn(x,y;y1) sin(nwar) (10.1)

n=1

Using this expression in the Laplace’s equation we obtain

Z ((‘fy? - TL27T2> Falz,y, y1) sin(nmrat) = —4wd(xr — 2)6(yr — y) (10.2)

n=1
Completeness of the orthogonal functions sin(nmz) allows us to write the delta function as

Sz —uar) = Z sin(nmz) sin(nmra/)

n=1

Replacing this expression in (10.2) we obtain

o0 2 oo
Z ((’9?//2 - n27r2) fn(x,y;y1) sin(nwar) = —47d(y! — y) Z sin(nma) sin(nwas) (10.3)
n=1 n=1

Comparing the function behavior of parameter z on LHS and RHS of (10.3) we obtain that the
function f,, is sinusoidal. Separating out the y part of the expression into other function g,, we get

fn(@, y391) = gn(y, y!) sin(dma)

Now we can substitute this back into our green’s function G in (10.1) we get

G(z,y;z,y) = Z 9n(y,y!) sin(nmz) sin(nwxl)

n=1
Substituting this expression back to (10.2) we obtain
O e (y,y1) = —4rd(yr — y) (10.4)
dyr? | gn\Y,Y/) = oYy —y .

This expression g, also has to satisfy the boundary conditions as the complete greens function G
so we have g,(y,0) =0 and g,(y,1) = 1 as required. a
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(b) Taking for g,,(y, y/) appropriate linear combinations of sinh(nmy/) and cosh(nmy/) in the two regions
y! <y and y/ >y , in accord with the boundary conditions and the discontinuity in slope required
by the source delta function, show that the explicit form of G is

oo

1 : : . :
G(z,y;2t,y) =0 Z () sin(nma) sinh(nmaf) sinh(nry<) sinh(nw (1l — ys))

where y<(y~) is the smaller (larger) of y and y/.

Solution:

Now that we have the general expression for the green’s function (10.4) we can divide the region
into parts with =7 > = and z/ < z, since in each of these cases, the source term in the differential
equation is zero as the delta function is zero there §(a’ — z) = 0 if 2’ # x so we get

g< = ac sinh(nmyl) 4+ be cosh(nmyr)  ifyr <y

In(y,yl) = {

g> = as sinh(nmyl) 4+ bs cosh(nmwyr)  if yr >y

Finding this function is, down to finding the unknown coefficients a.,a~,b-,b~. Applying the
boundary condition g, (y,0) = 0 = g,(y,1) we get

0 g + 4 if yr >
= —_— = — T 1
9> = g< 8ylg< 3y/g> Yy Yy

Now the boundary condition such that g~ (3’ = 1) = 0 and g« (y’ = 0) = 0 suggests sinh functions
suit the boundary condition than sin. Thus we get

a< sinh(nmy/) ifyr <y

In(y,y!) = {

as [sinh(nmylr) — tanh(nn) cosh(nmyr)] if yr >y
Continuity requires that the function match at y = y/ so we have
a< sinh(nwy/) = as [sinh(nmyr) — tanh(nmyr)] (10.5)

and the jump discontinuity of greens function require

B) B)
@gn(y<) - @gn(yﬁ =1 (10.6)

The equations (10.5) and (10.6) give system of equation which can be solved as

sinh(nmy) —sinh(nmy) + tanh(nm) cosh(nmy)\ fa<\ _ (0 _
cosh(nmy) — cosh(nmy) + tanh(nm) cosh(nry) ) \as |
Again solving this with simply gives

(6) = =gy (OO ) ) cosh (7))

Substituting the coeflicients we get

~—

| ifyr<y

sinh(nmy)[sinh(nm) cosh(nwy!) — cosh(nw) sinh(nwyr)]  if yr >y

4 sinh(nzy!)[sinh(nm) cosh(nmy) — cosh(nm) sinh(nmry
o) = { (nyh)[sinh(n) cosh(ny) — cosh(n) sinh(

nsinh(n)

As required the greens function is symmetric in its parameters. The symmetry is such that the
expression looks exactly same if the parameter are exchanged. If we denote y. to be the minimum
of yand g/ and similarly for y~ we can write the above expression in a compact way as
sinh(nry<) sinh(nw (1l —ys))

n 9 /) = o1 N
9y, y/) nsinh(n)
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Subsisting this to the greens function solution we get

o0

G(x7 y7 xl? y/) = Z

. . Nsi . _
Tsmh(nm) sin(nma) sin(nrz/) sinh(nry< ) sinh(nm (1 — ys))

This is the required expression for the green’s function. |

10.4 Homework Four

10.4.1. (Jackson 3.1) Two concentric spheres have radii a , b (b > a) and each is divided into two hemispheres
by the same horizontal plane. The upper hemisphere of the inner sphere and teh lower hemisphere of
the outer sphere aare maintained at potential V' . The other hemispheres are at zero potential.

Determinte the potential int eh region a < r < b as the series in Legendre polynomials. Include terms
at least upt to [ = 4. Check your solution against known results in the limiting chases b — oo , and
a—0.

Solution:

The general solution to Laplace’s equation in spherical coordinate system is

u(r,0,¢) = [Art + Br=UHD][C cosme + Dsinme|[EP™ (cos 0) + FQ™(cos 0))]

Since there is azimuthal symmetry the value of m = 0. The potential is finite at both the poles, but the
associated Legendre function of second kind Q*(x) diverges at © = %1, which corresponds to poles, so
we require F' = 0. Absorbing constant C' and F' into A and By, the general solution reduces to

o0

u(r,0,¢) =Y [Alrl + Byr~ D] Py(cos 0) (10.7)
=0

Here the function P?(x) = Pj(z) is the Legendre polynomial.
Multiplying both sides by Py(cosf) and integrating with respect to dcosf from —1 to 1 we get

1 1
/u(r,9,¢)Pk(cose)dcosﬁ = /Z[Akrl + By~ WD) Py(cos 0) Py (cos 0)d cos 0
1 1 1=0

oo

2
A l B —(l+1):| _2 5
;[’“TJF ke 241"

2
2k + 1

~

—

Ak?"k + BkTi(kJrl)}

Now evaluating the integral for r = a and r = b respectively.
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Forr=a
1
ST [Apa® + Bra=*+D] = /u(a,@,(b)Pk(cos 0)d cos b
1
0 1
= /O~Pk(COSQ)dc059+/VPk(COSQ)dCOSF)
1 0
1
z/VPk(x)da:
0
_ Vv ¢ L ()
e Y SR
Which implies
- 14 () r'@)
Ava® + Brag—®+D) — ¥ 2 — 2 = 10.8
A L E I T R o () R

Again doing this for r = b we get

ST [Ab* + Bpb~* D] = [ (b, 8, ¢) Py (cos 8)d cos 0

\o L\b—‘

1
V - Py(cosf)d cos 8 + /0 - Py(cosf)d cosf
0

_

V Py (—x)dx

V(=1)*Py(z)dx

/
[

Ve[ g g
AL [T )G D DG D
Which implies
L _VEUH[_ry ry ]
R B = e R e o

So the two linear equations are
ApaF + Bra=FY = 8
ApbF + Bpb~ D) = (—1)kp

We can cast these two equation of unknowns A and Bj into matrix equation as

[Z: Z:E’I: 3} [g’,j N {Hﬂ)kﬂ} (10.9)
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.\\ -
/ o S\
/// il mv\\\\X

&

(a) Eletric field lines with b/a = (b) Eletric field lines with b/a =2.5 (c) Eletric field lines with b/a = 10
1.25

Solving the matrix equation we get the matrix

B(aF+ti—(—1)Fpk+t
Ak _ ( a2k+1(_b2)k:+1 )
Bi| = | Blab) (ot —(-1)*p*)

@2k T _p2kF1

Substuting the value of 3 from (10.8) we get

P(3) (e H 0 )

(E(=5)r(5+3)-r(=51)r(s+))
Ayl _V (a2t +1—p2h+ D (— BT (— 2+ 1) P (5 +1)T(5+3)
B =3 | _r()@n* (o) pr(5 ) x5 )r(s )
(ahH1—p2i+ D (- B VD (- 4+ 1) T (5 +3)0(5+3)
The coefficients are all zeros for all even k& > 2.
Ao | [0 )
don] = 8 2
The first few odd of this coefficient are
a?4b? - —7(at bt oS48
A T T R ) g [ e ) [ e,
By| 0|’ |B1| —3a’b’(atb) | 7 | Bg| — 7alb?(a®+6%) | 7 | By | T —11a°b% (a®4b%)
(a3—07) - 16(a”—07) 32(all—51T)

Substuting these coefficients in (10.7) we obtain the potential in with this boundary condition
1 3 /r(a®>+0b%) a?b*(a+b) 7 r3(a* +b%)  a*bt(a® +b°)
u(r,0,¢) =V [2 + 1 ( oy R Pi(cos) + e\~ "oy Y P;(cosb)
11 [ r®(a® +b5)  aSb%(a® + 1b°) 75 r7(a® +0%)  a®b®(a” +b7)
T3 ( all —pll  76(gll — pil) P5(co 0)+ﬁ T a5 _pts T 18(qls _ pio) Pr(cost) +---
This is the required potential in the region a < r < b. In the limit 6 — co we have

u(r,0,¢) =V B + Z (%) Py (cos ) — 1—76 (ﬂ) Ps(cos ) + % (7) Ps(cost) — 27556 (9) Pr(cosf) + .. }

In the limit b — oo the problem is they potential of splatted sphere everywhere outside the sphere

And the above expression matches the expected result. In the limit @ = 0, which corresponds to the
potential inside the sphere inside the splitted potential.

1 3r T o/r\3 11 /r ™o\
u(r,0,¢) =V {2 - ngl(cos 0) + 16 (5) Ps(cos ) — 3 (5) Ps(cos ) + — (5) Pr(cosf) +

(I

Which also matches our expectation.
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10.5 Homework Five
10.5.1. (Jackson 3.6) Two point charges ¢ and —q are located on the z axis at z = a and z = —a respectively

(a) Find the electrostatic potential as an expansion in spherical harmonics and powers of r for both
r>aandr <a.
Solution:
Le the position vector of point charges +¢ and —¢ be r1(a, 0, ¢) and ro(—a, 7, @) respectively. Any
point with position vector r will have potential given by

_q 1 1
Cdmey [r—ri] r— 7ol

If the angle between two position vectors 7 and 7’ is ~y, a function of this form, with the help of

cosine law, can be written as

ifr’ >r
1 1 r/\/1+ L, L, COS'y - > T‘Z
- — = . , = Z n—+1 PH(COS rY)
P —r'|  \/r2 472 =21 cosy ifr' <r — \r2
\/1+ 72 77 cos y n=

Here, 7~ = max(r,r’) and r- = min(r,7’). Also the generating function expansion of legendre
polynomials has been used

1 oo
Vi<l: ———— = t"P,(x
V1+t2 -2 nE::o (z)

By using the addition theorem for the legendre polynomials we can write

l
47T *y M
Pl(cosv)Zﬁ E Y, (01, 01)" Y (0, 0)
m=—1

So we can write the expression

1 — "
—ZZHQ[HZYZ (62, 61)° Y/ (6,0)

r—m| = -
|r2|(= a), we can generalize r~ = max(r,a) and r« = min(r,a). So the

Since we have |ri| =
potnetial expression becomes

0,¢) = Y™ (02,¢2)"Y,"(0,9)}

Z Z ST 07 )1

e { YE"L(0,¢)*—YY”(7B¢)*} Y™ (6,¢)

ZZQZ+]_ l+1

For the given problem 6; = 0,60, = 7. But
20 + 1

2 1
Ym#£0:Y"0.60)=0 A Y000 = TR =y o
I8
2 1 2 1
Ym A0 YMm6) =0 A Vo) =2 E P(-1) = Yr(me) =y it

47T€()

471'60

S
ﬁ
T
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Substuting these we get

 — ! dr 7t
P = < 1= (=1D)Y%m0| (0
¢ = 4 rl< IO
= < (1-(-D)HyL (e
4mol§\/%+1réﬂ< (~DHYP(6. )
Since Y,°(0, ¢) = /2 Py(cosf) and Vk € N: (1 — (=1)2) = 0) A (1 — (—=1)**! = 2), we get
q X [ p2kt+1 .
9 N [ 12 omeo > (W) Pypiq(cosf) ifr<a
VkeN:® = 1 Z 2<T+2 Py y1(cos ) = k20 -
€ 5o \"'> 27350 > (f%ﬁ) Pypy1(cosf) ifr>a
k=0
This is the required expression for teh potential due to this dipole. O

(b) Keeping the product ga = p/2 constant, take the limit of @ — 0 and find the potential for r # 0 .
This is by definition a dipole along the z axis and its potential.
Solution:
In the limit a — 0 we have r > a so we get

q O/ g2k+1
¢ = }ng%) 2meo szo <7,2;€+2) Pyi1(cos0)
— 1 qa 1 P 0 a2P ;
_a1_>n%271'60 ﬁ 1(COS )+T73 3(COS )_|_
_p cosf
B 47‘(’60 ’I"2
This is the required expression for potential due to a dipole. 0

(c) suppose now that the dipole in (10.5.1b) is surrounded by a grounded spherical shell of radius b
concentric with the origin. By linear superposition find the potential everywhere inside the shell.
Solution:

Since the grounded sphere attains charge due to induction of the dipole inside it. It creates its
own electric potential inside the sphere which follows Laplace’s equation.The general solution to
Laplace’s equation in spherical coordinate system is

u(r,0,¢) = [Art + Br~UHD][C cosme + Dsinme)|[EP™ (cos 0) + FQI™(cos 0))]

Since there is azimuthal symmetry the value of m = 0. The potential is finite at both the poles, but
the associated Legendre function of second kind Q] (z) diverges at = £1, which corresponds to
poles, so we require F' = 0. Also since the potential is finite at 7 = 0 we require B = 0 Absorbing
constant E into Ag, the general solution reduces to

u(r,0,¢) = Z Ayt Py(cos 0) (10.10)
1=0

Here the function P?(z) = P,(z) is the Legendre polynomial. By superposition principle the
totential inside the sphere of radius b must be potential due to the induced charge in sphere and
the potential by dipole. So potential everywhere inside the sphere is

p_Pilcosd) + ZArlPl(cos 0)

=0

=P+ ZAlTlPl(COSQ) =

2
TE T
1=0 0
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But we require ® =0 at r = b.

> Py(cosf
ZAlblPl(cos ) - 71((3(2)8 )
P 4eq b

Since {P;(z);! € N} form a set of orthogonal functions the coefficient of P;(z) on either side of
equation must be equal for this equation to be identity, thus we get

qg 1 qg 1.
 dwep b3’

AP =0, = A =0;VI#1

Using the value of A; in (10.10) we get

p cosf q 1 P r
o' = - frcosﬁz—[———} cos @
4dmey 12 4dmegbs dmeg L2 b3
This is the required potential everywhere inside the sphere (|

10.5.2. (Jackson 4.1) Try to obtain results for the non vanishing moments valid or all , but in each case find
the first two sets of non vanishing moments at the very least. Calculate the multipole moments ¢, of
the charge distributions shown

(a)
Solution:
The charge density can be written as

p(@) = L5(r — a)5(cos 6) {5(@ +6(0+ g) —S(é—m)5 <¢ N 3;)}

r2

™

Since all the charges are in plane 6 = § so cos) = 0. The multipole moments are given by

Gim = / Y9, 6)pla)

2l+1(l—m)' 1 _ 2 i i
_ P™(0 [1 imn/2 immw im3m /2
\/ p (H_m)!qa 7(0) [1+e e e

Sicne P/™(0) = 0 for all even m we can write m =2k +1;k € N

25 = 2qal [1 — i(~1)*] \/21 +1 (01— (2k+ 1))!Plzk+1(0)

4 (I + (2k + 1))

— 2qal [1 _ Z(_l)k] }/ZZkJrl (g70)

This vanishes for all even [ thus the values for odd 1 and m are

. N3
Q1= a1, = —2qa(l — i)/

35
= —gf . =2a%(1+4)4/ 2
43,3 43,3 qa”(1+1i) e
1 /21
q31 = —q3_1 = 2qa°( Z)4 y

Theseare the first few non vanishing moments. g
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(b)
Solution:
The charge ensity is

_ q
2mr?

p(x) [0(r —a)d(1 —cos@) + 6(r —a)d(1 + cos) — o(r)]

The multipole moments are given by

G = / rY (6, 6)ple)d e
— qa' P (0) [Y7(0,0)° + ¥7(x, 0)"]

for [ > 0 and ggp = 0. By azimuthal symmetry, only the m = 0 moments are non vanishing. Thus

we get
2041
a1, = qa'yf —— B+ P = 1)]

20+ 1
47

5

q2,0 = \/>qa2; q2,m=0 =0
iy
9

qa,0 = \/;qcfl; Ga,m=0 = 0

These are the moments. O

>0

=qa' [1+ (-1)"]

So, this leads to

(c¢) For the charge distribution of the second set b write down the multipole expansion for the potential.
Keeping only the lowest-order term in the expansion, plot the potential in the zgy plane as a
function of distance from the origin for the distances grater than a.

Solution:
The expansion of the potential in terms of multipole coefficients is

[e'S) l
1 4 Ylm(a, 10)
dmeg 7 — 21+ 1 ri+l

Since we only have non-zero coefficients for m = 0 and [ even we have

o L 3 dr  Y2(0,¢)

- L —
47eg 2a4 20+ 1 T
_q dr , J20+1 |20+ 1 P(cosh)
" 47eg Z 20 + 19¢ s s ritl
1=2,4...
1
q a
= 2—— P, 0
dmeg rt+1 1(cos 6)

The lowest order term is [ = 2. And in the x — y plane 6 = 5 so we get

e (5)
 dwega \r

This is the inverse cubic function whose graph is shown in Fig. (10.2) looks like. O
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Lowest term in the multipole expansion

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
r

Figure 10.2: First term of multipole expansion.

(d) Calculate directly from Coloumb’s law the exact potential for b in the  — y plane. Plot it as a
function of distance and compare withe the result found in part c.
Solution:
For the charges given we have in the cartesian coordinate system, in x — y plane, if the distance
from the origin to any point on the plane is r we get

q 1 1 1 )
b = - 4
47T€0 (\/7’2 —|—a2 r \/T2 —|—a,2

Plotting this as a function r we get the plot in Fig. (10.3) |

Exact solution

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

Figure 10.3: Exact solution

10.5.3. (Jackson 4.9) A point charge ¢ is located in free space a distance d from the center of a dielectric
sphere of radius a ( a < d ) and dielectric constant €/eg
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(a) Find the potential at all points in space as an expansion in spherical harmonics.
Solution:
The charge at d inuces charge in the sphere. The induced charge produces the field inside the
sphere. Again, using the general solution of Lapalace’s equation in spherical system with azimuthal
symetry we get

q - 1
b, = — At P 10.11
in = EZO ' P(cos 6) (10.11)

We can chose the coordinate system such that the Z axis of our coordinate system passes through
the charge and the center of sphere. WIh this. Outside the sphere the potential due to the chage

is given by
1 ¢ 4 \~p @
Doy = P 0 10.12
YT amey lr— 7| 4meg — Lt 1(cos6) (10.12)
¢ [t al
= Tree 2 { = + B < l+1>} Pi(cos0) (10.13)

The component of electri field parallel to the surface of the sphere is

laq)in
r 00

in
Ee -

Z A— Pl cosf)sin 6
47T€0

T=a r=a

q S A Tl / :
= e 2 lﬁpl (cosf)sind

(10.14)

Similarly the component outside the sphere is

o) l l
EQut = 4 { < + B (a)} P/(cosf)sin @

> l
_ 4 E a Bl / .
I+1 AN " Adreo Lll_,_l + a} Pj(cosf)sinf
1=0

r=a =0
(10.15)

Equating (10.14) and (10.15) we get

¢ A ¢ ad B e [a
dre a  4meo [dl+1 + ] = A= @ { + B (10.16)

0Pin
€

B =~ or

_ iy {AZCH Pcost)  (10.17)

r=a =0

Similarly for the radial component of field outsie the sphere is

OPout q ~= [la? (I+1)altt q la'=t (1+1)
out __ ou _ _
EXM = —¢ o = {dlﬂ —Bi— 15 Py(cosb) =5 A - B Py(cos )
r=a =0 r=a
(10.18)
Equating (10.17) and (10.18) we get
q Al q lat—1 l+1 altt [+1
it a2 4nm [dl+1 “Bea | A = g B (10-19)
Solving two linear equations in A; and B; from (10.19) and (10.16) we get
(2-1)1 o
B, = < 10.20
i@ an (10.20)
2l +1 I+1
A = R (10.21)

I+ (I + D)< @it
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Substuting the coefficient in (10.20) an (10.12) we get

l

o0
_q 20+1 r ]
(I)in—ig l_'_(l_'_l)%olePZ(CObH)

And similarly

0 l € _ g2+
q r (2 -1l
Doy = £ Py(cosb
M ey & [d“l TR AT )L 1(cos 6)
These are the expression for the electri field inside and outside the sphere. O

Calculate the rectangular components of the electric field near the center of the sphere.
Solution:
Inside the sphere, the first few terms are

=~ [ L pcost) + —2 " Pr(cost) + — > Pycost) + O
"= e o o (cos 728 d 1(cos 2134 73 2(cos
The radial radial component of the field is
0Py, . q 3 1 . q 3cosf R
ET:— = —— 0 = —
5 " p [0+1+25°d 1(cosB) + O(r )]7' 47red[1+2“€°+0(71)}r
In the limit » — 0 we get
q 3cosf | .
E.=—
" dmed [1—}—6?}

Similarly the tangential () component of field is

109y, , 1 g —3sinf r s q 3sinf A
Ee__; 00 0= r 4dme [O+ 1+e?d+0(r)]a_4ﬂed {1+26€"+O(r)}0

In the limit r — 0 we get

B, — q {3sm9}A

dmed |1+ 22
Since the ¢ component of the field is 0 as the potential is independent of ¢ we get
__a 3
 dmed 1+ 2

q 3
dmed 1+ 20

[— cos 07 + sin 09} =
Where k is the unit vector along z—axis. |

Verify that, in this limit €/e¢y — oo, hour result is the same as that for conducting sphere
Solution:
In the limit €/¢y — 0o we have

q

(I)in:
47T€()d
and
& e 2l+1
q
Dout = Py(cos b

We can invoke the spherical harmonics expansion in reerse and write the expression as

[t e

dreg | 7 |r — 7’| - |dr — a?7|

Whih is indeed the potential of a sphere outside the sphere O
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Ymol

10.

10.6.1.

10.6.2.

1079
1.04 [

1.04

1.04 |-

1.04

1.03 -

6 Homework Six

(Jackson 4.12) Water vapor is a polar gas whose dielectric ocnstant exhibits and appreciable tem-
perature dependence. The following table gives experimental data on this effect. Assuming that water
vapor obeys the ideal gas law, calculate the molecular polarizability as a function of innverse tempera-
ture and plot it. From the solope of the curve, deduce a value for the permanent dipolemoment of the
H50 molecule.

T(K) Pressure (cm Hg) (£ —1) x 10°

393 56.49 400.2
423 60.93 371.7
453 65.34 348.8
483 69.75 328.7

Solution:
With the ideal gas equation we have

N P
PV = NkT =—=—
\%4 = n v =T

By Clausis-Mossetti equation we have the molecular polarizability is given by

=2 (fam) =% (=)

Plotting this as a function of % gives The slope is 8.9 x 1073°

O

(Jackson 4.13) Two long, coaxial, cylindrical conductin surfaces of radii a and b are lowered vertically
into a liquid dielectric. If the liquid raises an average height h between the electrodes when a potential
difference V is established between them, show that th esusceptibility of the liquid is

b% — a?pghIn(b/a)
60V2

Xe =

where p is the density of the liquid, g is the accleration due to gravity, and the susceptibility of th air
is neglected.
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Solution:
The total energy in the capacitor of capacitance C' is given by

_]' 2
E_§CV

The capacitance of coaxial cylinder per unit length is given by

o 27‘(’60
~ In(b/a)

Let [ is the length of the cylindrical conductors above the liquid, of which the liquid raises upto h. The
section with [ — h is air filled and the section with height A ahove the liquid surface is dielectric filled.
So the capacitance of each section gives

2meg(l — h) 2meh
Cair = ; Cliquid =
In(b/a) auid

In(b/a)
The total upward force on the raised liquid is thus

o dE EVQE B EVQE 2meg(l — h) 2meh
~dh 2 dh 2 dh In(b/a) In(b/a)
™
ey Ot
But we have € = ¢y + xc€0, SO we get
TXe€0
F =
In(b/a)

This force is balanced by the gravitational force in quilibrium which is given by
F=mg=pVig
The volume of raised liquied V. is
V, = n(b* — a*)h
Thus
F = pr(b? — a®)hg

Equating the forces

TTXe€0 2 2
= pr(b? — a®)h
In(b/a) pm(b” — a”)hg
_ (b* —a®)pghln(b/a)
Xe = €0V2

This is the required expression. (|



Chapter 11

Classical Electrodynamics II

11.1 Homework One

11.1.1. (Jackson 6.1) In three dimensions the solution to the wave equation (6.32) for a point source in space
and time (a light flash at t* = 0, x> = 0) is a spherical shell disturbance of radius R = ct, namely
the Green function G*). It may be initially surprising that in one or two dimensions, the disturbance
possesses a “wake”; even though the source is a “point” in space and time. The solutions for fewer
dimensions than three can be found by superposition in the superfluous dimension(s), to eliminate
dependence on such variable(s). For example, a flashing line source of uniform amplitude is equivalent
to a point source in two dimensions.

(a) Starting with the retarded solution to the three-dimensional wave equation, show that the source
f(@',t) =06(2")o(y")d(t') , equivalent to a t = 0 point source at the origin in two spatial dimensions,
produces a two-dimensional wave,

_ 2cO(ct — p)

\Il('rayat) - \/m

where p? = 22 + 3% and O(€) is the unit step function [O(¢) = 0(1) if £ < (>)0]
Solution:
The retarded solution is

U(x,y,z,t) :/Md3x’ (11.1)

|z — |

Substuting the source function with the given delta functions we get

5(2')5(y)8(¢ — 2=
vo [
R
 §(t—R
-]
R
Since we have cylindrical coordinate system we get
R=|z—a'|=+/p?+ (2 —2)2 where 2’ =y =0

This integral can be done with substitution. Supposing u = 2z’ + z, we get dz’ = du and the limit

240
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stay the same

U(p,t) = / 5(’5_\/7%‘2/0)% (11.2)

Now this integral is of the form

_ [ (@)
\Il(a)i/ g(x) a

making substitution of variable f(x) = 8 we get df = f'(x)dzx so that we get

_ [ 1
v = [ o) P’

Tt is clear that the delta function only picks up values of z for which § = f(z) = 0. So the delta
function reduces the integral to the sum of finite values for which 8 = f(x) = 0, let the solutions
of B = f(z) = 0 be «;, this makes,

1
V@) = )

K2

for this problem we have f(u) =t — ﬂ whose zeros are
21 2
T .
P AL . ) = a; = /2t — p? ifct > p
c

there are no roots if ¢t < p and the delta function is zero and the integral is identically zero. Also
the derivative at the root is

)= ——t — f(a;) = iﬂ
B e/ p? + u? Yo cct

Substituting this in the integral (11.2), knowing that there are two values of «; we get

22 1
‘I’(P,t):{a/mct if ct > p

ifet <p
the two cases can be combined by using heaviside function

w( N 2e¢0(ct — p)  2cO(ct — /2% —y?)
"1:7 y7 = =
/242 — p2 212 — 22 2

This is the required form of the wave

O

Show that a “sheet” source, equivalent to a point pulse source at the origin in one space dimension
produces a one dimensional wave proportional to

U(z,t) = 2meO(ct — |x|)

Solution:
For the sheet source we expect a plane propagation of the wave. The source function for the sheet
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source at some particular time ¢’ = 0, let the 2’ = 0 plane be the source, so we can write the
source function as

f(t, ") = o(a")o(t)
Using this source function to get the retarded time solution and substuting in (11.1) we get

oo

/ !
U(z,y,2,t) = / wfg?ﬁ)retdw’dy’dz’

— 00

Again we get R = /(v —2/)2+ (y — v)2 + (2 — 2/)2.  Again similar to the previous rpoblem
chaning of variables with w = y — 3',v = z — 2’ and recognizing that the delta function integral
simply picks up 2’ = 0 we get

U(z,y,2,t) = dudv

“)5(t__v63127155)
/ Va2 +u? 4 v?

Since the integral has cylindrical symmetry when we have p = vu? + v? we can make cylindrical
variable substitution to get

_ /p2 + x2/c
— / pdpdd
AVA i
Due to cylindrical independence the phi integral is 27 and we are left with delta function integral
similar to previous problem

U(p,¢,2) =

Tlmt) — —V/p? +a:2/c
0= | T

This again has a delta function inside the integral, and is non-zero only for the delta function
equal to zero, the zeros of the expression inside the delta function, only give non zero values and
the integral truns to a sum over these finite values of solution, the zeros of the delta are

—Vpr+a2/c=0 = p=tVc*t2—z2ifct >z
Also supposing 8 = f(p) =t — \/p? + 22 /c we get

2p
dB = f'(p)d df = — — pdp = c\/p? + 22d
B = f'(p)dp 6 N/ pdp P 8

Substuting these

/ *c\/mdﬂ

Since there are two values of zeros of the funtion we have two terms in sum and we get
U(x,t)=c+c

By similar arguments as in the previous one we get non zero integral only if ¢t > x we can write
this using the Heaviside function

U(x,t) = 2cO(ct — x)

This is the required function. O
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11.1.2. (Jackson 6.4) A uniformly magnetized and conducting sphere of radius R and total magnetic moment
m = 4w M R3/3 rotates about its magnetization axis with angular speed w . IN the steady state no
current flows in the conductor. The motion is non relativistic; the sphere has not excess charge on it.

(a) By considering Ohm’s law in the moving conductor, show that the motion induces and electric

field and a uniform volume charge density in the conductor p = mw/mc? R3
Solution:
The magnetic moment of sphere is given by m = MV where V = %wR?’ is the volume of sphere.
Comparing it to the given magnetic moment we get that M = M2z. The magnetic flux density
inside the sphere is given by

2 Hom

B=2uoM =
3Ho 2mR3 -

By ohm’s law the current in the moving conductor is
J=0(E+wvx B)
Since there is no current J = 0 which implies
E=-vxB

Since the sphere has angular frequency w, the translational velocity at r is given by v =7 X w =
wr X z thus we get

E=rxwxB= 2/?; 2(2-7)—7(2-2)
This simplifies to
fomw .

This is the projection of vector r onto the horizontal axis, which in cylindrical system is

Hommwp
Ep=- 2T R3

Now that we have the field we can apply gauss’ law to calculate the charge density

v E=L
€0

Sinc our field only has component along p we have

OE,  powmp
p =€ = — 3
ap 21 R

This is the required volume charge density. (|

Because the sphere is electrically neutral, there is no monopole electric field outside. Use symmetry
arguments to shwo that the lowest possible electric multipolarity is quadrupole. Show that only
quadrupole field exists outside that the quadrupule moment tensor has non vanishing components
Q33 = —4me2/3C2, Qll = QQQ = _2‘3‘3

Solution:

Since there is no charge inside the sphere the exterior can be described as the multipole expansion.
Since there is no charge, the monopole moment which is the moment of total charge is zero. The
electrostatic potential can be obtained as

2
_ _ _ Homwp
D(p) = /Edl = /Epdp Oy + AR
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This can be simplified by using the cartesian coordinate formulation as

Zon;c; r?sin? 6.
s

(I)(T, 9) =&y +

Wrinting sin?  in terms of legendre polynomials we get

O(r,0) = Do + Aéj:g: 72 [Py(cos §) — pa(cos6)]

this simlifies to

HoTmw
6mR3

O(r,0) = (@0 + r2) Py(cosb) — Homeo 72 Py(cos )

6mR3
At the surface of the sphere r = R we get the potential as

Homw
6mR3

O(r,0) = (<I>0 + r2) Py(cos ) — Homeo 72 Py(cos )

6mR3

Since the potential is azimuthally symmetric, we can write the external potential as a legendre
polynomial series

V(o) = Z A Py(cosb)
on the surface, and out side the surface the potential is
R\ 1
®(,0) = Al — P, 0
(0=3 (3) Ateoss)

Since there is no charge the monopole term for [ = 0 vanishes so we get

_ Homw
6mR

Dy =
And the expression becomes.

pomwR?

O(r,0) = Ps(cos 9)

6mr3

Now tath we hae te exterior potential can be converted to expression with spherical harmonics

o [4m pomwR? Yoo (6, ¢)
n 5 6 72

The standard multipole expansion expression is

e’} l
1 2m Yzm(gv ¢)
b = E E m
4meg = 20 + 1% ri+l

compariosion gives

iuomez - 5 2mwR?

:74 —_— S —
420 eo 47 67 4 3c?

The moment expression in cartesian coordinate system is given by

4 4mw R? 1
Q33 =24/ 50 = —?7Q11 = Qa2 = —§Q33

this is teh required expression. O
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(c) By considering the radial electric fields inside and outside the sphere, show that the necessary
surface charge density o(9) is

1 dmw

o0) = 32

. {1 - ng(cos 9)]

Solution:
the surface charge can be computed by using teh normal component as derivatives of potential.
In the spherical coordinates we get

2
B = —%PQ (cos @)

Homwr

Ein _
" 3TR3

[po(cosB) — Pa(cos )]

the surface charge is thus

_ out in _ Ho€oTnw 3
oc=¢ (B - E} )’T:R =g [2P2(cos 0) — (Py(cos @) — Pa(cos 9))]
mw )
=5 2m [Po(cos 0) — in(cos 0)}
This gives the required expression for teh surface charge density. |

(d) The rotating sphere serves aas a unipolar induction devie if a stationary circuit is attached by a
slip ring to the pole and sliding contact to the equator. Show that hte line integral of the electric
field from the equator contat to the pole contact is &€ = pomw/4TR
Solution:

The line integral is

pol
&= / Edl = ®equator — Ppot = P(0 =7/2) — (0 =0)
equator
Substuting the value of theta in the expression for the potential we get
Hommw _ MoTw

£ =~ [Py(0) - Py(1) = H

This gives the required expression for the integral.

11.2 Homework Two

11.2.1. (Jackson 6.11) A transverse plane wave is incident normally in vacuum on a perfectly absorbing flat
screen

(a) From a law of conservation of linear momentum , show that the pressuer exerted on teh screen is
equal to the field energy per unit volume in the wave.
Solution:
We can choose our coordinate system such that the z axis lies along the direction that the plane
wave travels. Since electric amd magnetic fields are perpndicular to each other and to the direction
of propagation the electric field and magnetic field become

E=FEi H=Hj
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The momentum conservation equation for jth component of the momentum is
d
E (Pfelds + Prmech); = Z Tijnida (11.3)
i

From the way we chose our coordinate system n only has component along the k direction, the
index for which is 3 so we can replace the summation by a single term

Z Tiin; = T35

The stress energy tensor T;; is given by
T Lo Lo

Calculating the the component of the tensor in the rquired direciton we get
1 5 1. 5
:rjg = €p EgE] — iE 53j + o HgHj — §H 53j
1
= 5 (60E2 + MoHQ) (53j

Again by our choice of coordinate system the component of momentum is also along the z axis so
the only non vanishing component of momentum is in that direction.

Pj_s = = (eE*+ poH?) 835

j=3

(€0E2 + ,uon)

= po| —

The expression on the right is the expression for the energy density of electromagnetic wave so
rthe expression can be written as

PgZU,

where wu is the energy density. Since the force is the change in momentum per unit time, and since
the initial momentum is zero, we get

F=(P3—0)/t="Ps

where ~ is the time averaged momentum. Which is equal to time averaged energy density, thus we
get

F=u
This shows that the energy density is energy density of the field. O

In the neighborhood of the earth the flux of electromagnetic energy from the su is pproximately
1.4 kW/m?. If an interplanetary “sailplane” had a sail of mass ;ng of area and negligible other
weight, what would be its maximum accleartion in meters persecond squared to the the solare
readiation pressure? How does this compare with th eaccleartion due to solare “wind”( corpuscular
radiation)?

Solution:

The flux relation to the energy density is u = ﬁ—‘c‘x so we get

1.4 % 10° N
= = 10762
30x108 0 X 0TE
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So the accleartion (a) can be calculated as

PA P 5x10°6

m
=== —5x10°%=
T T m T Ix103 5

The the accleartion is a =5 x 107333 O

11.2.2. (Jackson 7.1) For each set of Stokes parameters set s = 3,517 = —1,80 = 2,83 = —2, deduce

the amplitude of the electric field, up to an overall phase, in both linear polarization and circular
polarization bases and make an accurate drawing similar to Fig. 7.4 showing the lengths of the axes of
one of the ellipses and its orientation
Solution:
The stokes parameters are defined for linear polarization with the following relations

so = |E1|* + |Ea|”

2 2

s1=|E1|” — | By

S9 = 2RG(ETE2) = 2|E1||E2| COS(92 — 91)

S3 = QIIH(ETEQ) = 2‘E1||E2| sin(92 — 91)

Inverting these relations we get

So+ s So— S
|E1|—\/O ! By = 021:¢§
T
0y —0; =—acos | — | = —
- (M) :

With these paameters we get the components of electric field as

E = (|Er|e"™, |Ba|e®) = ¢ (|Eu|, | Bzle’® )

Sice the phase factor in fron is arbitrary we can ignore it because we can always achieve zero phase
factor by rotation of choice of axes. Similarly for the circular polarization case we have the stokes
parameters defined as

50 = |B4[? +|E_
s1=2|E||E_|cos(f- —6)
s9 =2|EL||E—|sin(6_- —04)

Similarly inverting these field amplitudes in terms of parameters give

80+S3 1
B =20 B-| = f
-3
0_ — 04 = acos >
50753 NG

B = (|Efe™,|Eale™) = '™ (|En], [ Eale® )

ot

[\)

Now the field cmponents are

With the parameter for F; and E5 and the phase difference the diagram can be plotted. (|
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11.2.3. (Jackson 7.3) Two plane semi-infinite slabs of the same uniform , isotropic, nonpermeable, lossless
dielectric with index of refraction n are parallel and separated by an air gap (n = 1) with width d . A
plane electromagnetic wave of frequency w is incident on the gap from one of teh slabs with the angle
fo incidence i . For linear polarization both parallel and perpendicular to the plane of incidence

(a) Calculate the ratio of power transmitted into the second slab to the inciden power and the ratio
of reflected to incident power.
Solution:
Let i is the incident angle and r is the angle of refraction by snells law we have

nsine = sinr

where n is the refractive index. We can rearrange thi sto get

cosT = \/I—SinzT‘:\/l—HQSinzi

The value of cosr is purely imaginary when ¢ is greater than critical angle for total internal
reflection. To find the transmittedn and replected components in terms of th eincident component
we can use the interface matching. In the first interface

E,=E,+E, =E, +E_
H,=n(E; —E,)cost = (Ey —E_)cosr

Here we have F, and H, are the paralle] components of electric and magnetic field.
In the second interface we have

E+€ik-d + E_efik-d — Et

(Eyettd — B_e™®9) cosr = nE; cosi

Solving for F; and E_ in terms of E, and FE; we get

E+:1E¢ 1+ncosi +1Er 1_ncosi
2 CcoST 2 coST

1 ) 1 )
£ =lp 1_ncosz Ll 1+ncosz (11.4)
3 COST 2 CcoST

Similarly the condition with the second interface can be solved to get

E+ _ leik.dEt <1 + TLCOSi)

2 cosT
1 . N COS 1
E_ = e k-dp, (1 oy ) (11.5)

Let us write e = 2¢%% Fuation. (11.4) and (11.5) can be solved to get

Et 46

Ei (1+e)2e#d_ (1 —¢)2cikd (11.6)
E 1— 2 id-k

= = (1= )™ (11.7)

&

L (1+e)2eikd — (1 —¢)2¢ikd
This gives the ratio of transmitted to reflected amplitudes. The power is proportional to the square
amplitudes so the ratio of transmitted power to the incident power is

2
b B _ [ﬂ
P, B2 |E
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and similarly the reflected power ratio is
2 2
P, E: |E,
P, E? |E
These are the required ratios where the ratios of amplitudes are calculated. O

(b) for i greater than the critical angle for total internal reflection, sketch the ratio of transmitted
power to incident power as a function of d in units of wavelength in the gap.

Solution:
In the equations (11.6) and (11.7) we can write the ration € and the phase k-d as purely imaginary
numbers and simplify those quations to get the function of th ratios. So assuming the phase and

the ratio to be complex we get
€ =ix k-d=1i8
Using these in (11.6) and (11.7) we get

T, 2ia z 4a?
T;  [2iacoshB+ (1—a2)sinhB|  4a?+ (14 a?)sinh? B

and smimilarly the ratio of reflected to transmitted power is

T.  (1+ a?)? sinh? 3

T, 402+ (1+ a?)sinh® 3

Substuting 5 = kd and also n = 1 we get
T, (1 + a?)?sinh? kd

T, ~ 40 + (1 + a?)sinh? kd

Graphing this function as a function of % we get.

11.3 Homework Three

11.3.1. (Jackson 7.12) The time dependence of electrical distrubaances in good conductors is governed by
the frequency-dependent conductivity. Consider longitudinal electric fields in a conductor, using Ohm’s
law, the contunuity equation, and the different form of Coulomb’s law.

(a) Show that the time-Fourier transformed charge density satisfies the equation

[0(w) — iweg) p(x,w) =0

Solution:
Let us assume the time varying quantities be charge density p(t), current density J(¢) and electric

field E(t). Taking the fourier transform to take to frequency space

) = <= [ plt)ea
1 wt

J(w) = E/J(t)e dt
1 twt

E(w) = E/E(t)e dt
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Now The contuinity equation

In the frequency space, this becomes
V- J(w) = iwp(w)

The Ohm’s law relates chage current density and electric field as,
J(w) =0c(w)Ew)

The coloumbs law can be used express the relation between the electric field and charge density
as

Combining all these we obtain

This is the required expression. 0

(b) Using the representation o(w) = 0o/(1 — iwr) where 0g = €gw27 and 7 is a dampinng time, show
that the approximation w,7 >> 1 any initial distrubance will oscillate with plasma frqueynyc and
decay amplitude with a decay constatn A = 1/27 .

Solution:
Using the representation o(w) = 0¢(1 — iwT) we get

(122 - iven ) ple =0

1—wr

substuting ooy = eow;T

2

wiT
[ P —iw]zo
1—wr

this is a quadratic equation in w which can be rearranged to get 7w? +iw —w?7 = 0. The solutions

p
are
— + ,/47'2%2) -1

w= 2T

Using the given approximation w,7 > 1 we obtain
1
w=tw, — —
Pooor

This shows that in frequency space the signal is delayed by % Reverting back to time space with
inverse fouerir transform we get

F(#) = F U F(wp i)

F(8) = fo(t)e*/?

This shows that the signal is decays at the rate % g
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11.3.2. (Jackson 7.19) An approximately monochormatic plane wave packet in one dimension has the in-
stantaneous form u(z,0) = f(z)e*o® with f(z) the modulation envelope. For each of teh forms f(x)
below, calculate the wave number spectrum |A(k)|* of the packet, sketch |u(x,0)|* and |A(k)|*, evaluate
explicitly the rms deviations from the means Az and Ak

(a) f(x) = Neol=l/2
Solution:

The initial waveform for this problem is u(z,0) = NeFo*=2#l/2 The wave number spectrum can

be obtained as

A(k) =

= —N
V2T

V2T

oo

1 .
u(x,0)e*ds

o0

1 ; o — oy 121
ezkm—i—ikgr s dl‘

— 00

This integral is a function of « and since it is even function of  we can write above integral as

A(k) = —=2N

oo

/cos(k — ko)ze /2

0

This integral can be computed and the final expression fo rthe integral gives

A(k) =

e

1
V2r [a2/4 + (k= ko)?

The mean square value for a function f(x) is given by the expression

Mean Square = -

For the mean squred deviation of x we can write

[ s@rds
T @) e
/OOIQealxldz
B 70 eclzldy

These integrals can be calulated with gamma functions, and the final result after integration is

Aaczﬁ
a

Similarly with same token for the spread of A(z) we obtain

Ak =

oo

/k2 b zdk
a2/4 + k2

—00
oo

[ [wrive] »

— 00
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This integral was obtained using computer algebra system and the final expression is

Ak =2
2

Checking for the product of AzAk we get

AzAk = \/5/2 =

Sl -
vV
DN =

(b) f(x) = New"" /4
Solution:
Taking the fouerie transform to get the frequency component functions

A(k) = \/% /u(xﬂ)eikmdx

This can be integrated for the geven initial shape as

oo

A(]f) _ EN / elko.’L—lk}.L—Oézlz/él

— 00

Thsi can be calculate to obtain

A(k) = N\/2/oz2e_(k_K0)2/a2

The spread can bew be similarly calculaged as above

o0

2.2
/xge acrT/2 g

Ar = |=

o0

/ 67a2:v2/2dl,

— 00

The integrals can be calculated using gamm function identities and the final expression (with
computer algebra system used) is

1
Axr = —
o

Similarly the spread in the frequency component can be calculated

/ k2e~2k /0% g

Ak = | =

o0

/ e/ g,

— 00

This was also solved using computer algebra system to obtain

«
Ak—§
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For this signal also the inequality AzAk > % holds as

Az Ak =

N =
N =

«
2

Q| =

So both the wave train satisfy the uncertainity principle. O

11.3.3. (Jackson 8.2) A transmission line sonsisting of two concentric circular cylinders of metal with con-
ductivity o and skin depth §, as shown, is filled with a uniform lossless dielectric (i, ¢). A TEM mode
is propagated along this line,

(a) Show that the time-averaged power flow along the line is

P= \/ﬁﬂ'a2|H0|2 In (b>
€ a

where Hj is the peak value of the azimuthal magnetic field and the surface of the innser conductor.
Solution:

By definition a TEM mode is a signle-frequency wave cmponent with both the electric field and
magnetic field transverse to the directio of propagation along the waveaxis. The innder conductor
has to have some charge per unit length, say A\. With a cylindrical gaussian surface around the
inner conductor we find the electric field is

— )\ 2
B 27T6pp
Since the waveguide axis is along the z axis, the magnetic field can be obtained from electric field
as
B = /ucz x E A é
= \/uez = /€
a a 2mep

Since given in the problem that Hy is the peak value of magnetic field in the inner conductor, we
obtain Hy as

1 1 A
pe  \Jp€ 2ma

This expression gives the total charge per unit length equal to

A =2maHy\/ e

Substuting this in the expression for electric field we get

T a
E = \/>H0P B = pHo-¢
€ p P
These two fields are correct for the static problem. Introducing the time dependence in the
waveguide we obtain

Hy=H(p=a)=B(p=a)

E = ﬁHogeikz—iwtb B = MHogeikz_th(%
e p p

Now we can calculate the energy flux using the poynting vector as
S=ExH

S == |: p/eHoaeikz—iwt} % |:HHanlkz—1wt:|
I p P



CHAPTER 11. CLASSICAL ELECTRODYNAMICS IT 254

Since in general we the quantity H is a complex number we can write this as
Hy = [Hole"

Substuting this in aboe expression and carrying out the corss product we get

2
S = \/E|H02a2 cos? (kz —wt +6) 2
€ P

The time averaged power flux is thus the average of above expression. But the average of cos? is
1
cos“a) = =
(costa) = 2

So we get

The total power can now be obtained by integrating the power flux over the whole area

P:fsé-(S}dA

27 b
1 1% 2&2
- ~ B H 2L pdpd
//2 6| 0 p2ﬂp¢
0 a

The integral in ¢ is just the value 27 and the rho integral is just logarithm. So we get
b
P= \/ﬁﬂ'a2|Ho|2 In () (11.8)
€ a
This is the requried power flow. O

Show that hte transmitted power is attenuated along the line as

P(z) = Pye™27*

where
1 1
L €5
T 200\, (b
i )
a
Solution:
The rate of power loss per unit area with skin depth § is given by

dP 1 2
G = 1HewdHyl

The area element in can be written as
da = pdpdz

Using this expression in the power flow equation we get

dpP 1

27
2
oo = puet [ |H[pas
0
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There are two boundaries the surface so we get

dP 2 ’
= 5/%“”5 UH”(a)| a+b|H ()| }

The magnetic field part of the expression can be substutited to get
dP T 9 a
& - Tm, [1 f} 11.9
4~ ool +y (1L.9)
As given in the problem , assuming the power loss along the line as
P(z) = Pye™27*

Differentiating with respect to z we get

dP(z) —-1dP
L - =T

Substuting P from (11.8) and its derivative from (11.9) we get

1 T a
T \/fmﬂmn (2) gl 3]

Simplification yields

11

NS R
2\ pod 1n<b>

a

This is the required expression. |

11.4 Homework Four

11.4.1. (Jackson 8.4 ) Transverse electric and magnetic waves are propagated along a hollow, right circular
cylinder with inner radius R and conductivity o

(a) Find the cutoff frequencies of the various TE and TM modes. Determine numerically the lowest
cutoff frequency ( the dominant mode) in term of the tube radius and the ratio of cutoff frequencies
of the next four higher modes to that of the dominant mode. For this part assume that the
conductivity of the cylinder is infinite.

Solution:
The eivenvalue equation for both the TE and TM mode is

(Vi+7%) ¥(r,¢) =0

where ¢(R, ¢) = 0. For TE mode there is no axial electric field, so we can solve for B,. There are
no charges and currents in the waveguide so they obety the homogenous wave equation
1 0°B
2 z _
V*B, — 2oz = 0
The wave is free along the axis of waveguide. so we can ssume that the solution for the magnetic
field has harmonic dependence in time in the direction of propogation thus we can write

B=RB eisziwt
= Dz
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Substuting this in the expression for the homognneous equation we get
2
w
ViB, = (2 — k2> B,
c

The laplacian operator in this expression is only in the transerse directionn. Because of the
cylindrical symmetri we can write the lapalacian in the cylindrical coordinate system as

10 [ 0B, 1 0°B, 5  w?
-2 il — _*\B
r Or (7‘ ar ) * r2 0¢? (k c2> i

2
K = (“:2 —k2)

If we assume the solution of the magnetic field B, = R(k'r)e"™? we get

Making a substution

O?R(K'r) OR(K'r)
2
"o tr or

This differential equation can be converted to a bessel differential equation with kr = x. The
equation then becomes

+ (K*r* = m?) R(kr) =0

282R(33) OR(z) 2 2 _
s +x E + (#*=?) R(z) =0

This is besseldifferential equatio. the solution of this equation is

R(z) = AJp(z) + BN, ()
Substuting this in the magnetic field expression we get
B, = (A (x) + BN, (2)) gthz—wt+me

Since the functions N,,(z) blow up at x = 0, and that the field is finite at the axis we have to
have B = 0. The solution then becomes

B. = AJp (K'r)eikemwttme)
At the surface of the perfect conductior constuting the wallsof eh waveguide, we have theboundary
condidtion

0B,

=1
or

r=R
Applying this condition we get
0
— (S (K =0
(5 Umt)

The zeros of the equation are simply the zeros of derivatives of bessel functions. Assuming the
ZEros are (i, we get

amn

k'r= Ampn = kK =
Substuting this for the expression relating k and k' we get

2 2
w* ag,

FEVaE T R
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Thus the magnetic field becomes
Bz = AJm(amn%)ei(kZ7wt+m¢)

For TE mode the axial electric field obeys same equation and we get similar differential equation
whose solution is

E, = AJm(k'r)ei(sz‘”qus)

The boundary condition is tha the electric field is zero at the walls E,(r = R) = 0 so we get Now
instead of the zeros of derivatives of bessel function the zeros are at the zeros of bessel function
Bmn S0 we get

_ B

k/
R

The solution then becomes
B, = AJp(Bun )€/ B 715

The cutoff frequencies are the frequencies where the wavenumber equals zero. So we get

7 for TE mode

Winn, = cam" for TM mode
These are the required cutoff frequencies for TE mode and TM mode. O

(b) Calculate for TM mode the attenuation constants of the waveguide as a function of frequency for
the lowest two distinct modes and plot them as a function of frequency.
Solution:
For TM mode, the power loss is given by

4P 1 (e 274 L |ov
dz 206 \wmn o w2

Oa

dl

O

11.4.2. (Jackson 8.6) A resonant cavity of copper consists of a hollow, right circular cylinder of inner radius
R and length L, with the flat end faces. Determine the resonant frequencies of the cavity for all types

of waves. With \/%R as a unit of frequency. Plot the lowest resonant frequencies of each type as s

function of % for 0 < % < 2. Does the same mode have the lowest frequency for %?
Solution:
For the cavity, the normal modes in TM modes are given by

7;[}(; d)) = EoJm (')/mn”')ez‘:zm(ZS Where’}/mn = R

Here z,,, are the zeros of bessle function J,,,. As given in Jackson eq. 8.81 we get the resonant frequency

1 5 prR 2
Wmnp = ﬁ JL‘mn—F T

o1 — 2.405,.’[12 = 3.832,2521 = 5.136and

The zeros of bessel are
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11.5 Homework Five

11.5.1. (Jackson 9.3) Two halves of a spherical metallic shell of radius R and infinite conductivity are sepa-
rated by a very small insulation gap. An alternating potential is applied between the two halves of the
sphere so that the potentials are £V coswt. In the long wavelength limit, find the radiation fields, the
angular distribution of radiated power and the total radiated power from the sphere.

Solution:
Two opposite charged halves of sphere creates a dipole so the dipole term in the potential expansion is
the dominant term. The dominant term on the potential expansion in terms of Legendre polynomial
expansion is

2

3R
P = Vgr—QCOSG

The potential due to electric dipole pointing iz the positive z direction is given by

p
dip7—— —5 COS 0
dmeg T

The donimant term must be equal to the dipole potential. Equating these

3 R? 1
§T—26089— 20059

% =
4meq r2
= p=6meVR*2

The potential in the sphere is oscillation with the frequency w as coswt, The magnetic field of such
oscillating field can be written as

ei(kr—wt)

B = LR (1 )

47 T

Subsisting the value of the dipole moment we get

2 p2 ji(kr—wt) R
B VYRR T 0
2 c r
The electric field is similarly given by
2, . R i(kr—wt)
E:—kpkx(kxﬁ)e
47eg T

Simplifying the vector cross products we simplify this down to
3 i(kr—wt) R
E=—"VERS—sin6b
2 T
Now the overall radiated power per solid angle is given by

dpP 1 9 X
E = iRe (’f' - ExH )
Subsisting the values of electric field and magnetic field in this expression we get

dP 1 3 i(kr—wt) R 1 3VEk2R2 i(kr—wt) R
E = §Re (7"2’;" . {—2Vk2R26T Slneo} X {_MO22€7" 5111(9(15})

Since 6 x qAb = 7, the above expression simplifies to

P _9VHE L
dQ 8  pugc
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The total radiated power is thus the integral of the above expression over the total solid angle in the
entire spherical shell

dP 9V 2]€4R4
P - - Q - ——— i 2 Q
% Qd % 3 oC sin“ 6d

Integral of of the quantity sin? @ over the total solid angle is just % thus giving us the final expression

_ 3rVIKARY
Hoc€

P

This gives the total radiated power. ]



Chapter 12

General Relativity

12.1 Homework One

12.1.1. (Geometrized Units) Express each of the pollowing quantities in two ways: i) in m™, as meters raised
to some appropriate power, and ii) in kg™ as kilograms raised to the appropriate power.

(a)

The momentum of an electron moving at 0.8c.
Solution:
The gamma factor 7 is

1 1

7 V1-v2/c2  1-— .82

The mass of electron is m, = 1.21 x 1073'kg. So th momentum is

p=mvy=29.1x10"3.0.8-1.67=1.21 x 103%kg
Since the conversion factor is 1m = 1.35 x 10%"kg we get
p=121x 107 (1.35 x 10°7) "' = 8.96 x 10~°*m

These are the required values of momentum in each unit. O

The age of universe (13.8)Gy
Solution:
The age(A) in seconds is

A =138 x10"-365-24-60-60 = 4.35 x 10'7s
The conversion factor is 1s = 3 x 10®m so we get
A=4.35x10"-3x10° = 1.3 x 10*°m
Since the conversion factor is 1m = 1.35 x 10°"kg we get
A=1.3x%10%.1.35 x 10> = 1.74 x 10%kg

These are the required values. (|
The orbital speed of the earth.

Solution:
The mass of Earth is M = 6 x 10?*kg which with the conversion factor 1m = 1.35x 10?"kg becomes

260
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M = 4.45 x 10~3m and the readius of earth (R) is R = 6.4 x 10°n and for our units G = 1 The
orbital speed (v) is given by

o GM  445x10°m
YT TR T T64x10m
v=264x%x10"°m°

=6.97 x 107100

Since the orbital speed is dimensionless, it has to have same value in kg unit also so
v =264 x 10 °kg"

These are the required values for orbital speed in each units. O

12.1.2. (Schutz 1.3) Draw ¢ and z axes of the spacetime coordinates of an observer O and then draw:

(a) The world line O’s clock at = 1m.

(b) The world line of a particle moving with velocity ‘fl—‘f = 0.1, and which is at x = 0.5m and when
t=0.

(c) The t and Z axes of an observer O whio moves with velocity v = 0.5 in the positive x direction
relative to O and whose origin Z =t = 0 coincides with that of O.

(d) The locus of events whose interval As? from origin is —1m?.

(e) The locus of events whose interval As? from origin is +1m?2.

(f) The calibration ticks at one meter intervals along the Z and ¢ axes.

12.1.3. (Schutz 2.1) Given the numbers {A° = 5 A1 = 0,4% = —1,43 = —6}, {By = 0,B; = —2,By =
4,B3 = 0} , {Coo = 1,Cp1 = 0,Co3 = 3,C30 = —1,C19 = 6,C11 = —2,C12 = 2,013 = 0,0y
5,09 =2,C93 = —2,C09 =4,C50 = —1,C55 = —3,C33 = 0} , find:

(a) A*B,
Solution:

A°By,=5%0+0%—2+—-1%x4+6%x0=—4

O
(b) A*Cyp for all g
Solution:
for =0
A%Clhg = A%Cho + A'Cho + A%Cy0 + A3Cyy
=5%x1+0*x5+—-1%x4—-6x—-1=7
Similarly
ACo1 =04+0+-5+6=1
ACho=10+0+ -2+ 18 =26
A%Co3=15+0+3+0=18
O

(c) AYC,, for all o
Solution:
This is same as the previous one because the dummy index is the only one different. O
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(d) A¥C,, for all p
Solution:

(e) A*Bg for all o, 3
(f) A'B,
(g) AIBy for all j, k

12.1.4. (Schutz 2.14) The following matrix gives a Lorents transformation from O to O:

1.25 0 0 0.75
0 1 0 O
0 01 O

0.7 0 0 1.25

(a) What is the velocity of O relative to O?
(b) What is the inverse matrix to the given one?
(¢) Find the components in O of a vector A — (1,2,0,0).

12.1.5. (Schutz 2.22)

(a) Find the energy, rest mass and three-veloity v of a particle whose four momentus has the compo-
nents (0,1,1,0)kg.
(b) The collision of two particles of four-momentum

Dy ? (37 _17070)k9a Y2 g) (27 11 170)k9

results in the destruction fo the two particle and the production fo three new ones, two of which
have four-mementa

D3 6_} (1717070)kg7 Dy 6_} (1771/27()’0)]{:9
Find the four-meomentum, energy, rest mass and three velocity of the third particle produced.
Find the CM frame’s three-velocity.
12.1.6. (Schutz 2.30) The four-velocity of a rocket ship is U ? (2,1,1,1) . It encounters a high-velocity

cosmic ray whose mementum is P ? (300,299, 0,0) x 10727kg. Compute the energy of the cosmic ray

as measured by the rocket ship’s passengers, using each of the two following methods.

(a) Find the Lorentz transformation from O to the MCRF of the rocket ship, and use it to tranform
the componetns of P.

(b) Use eq 2.35

(¢) Which method is quicker? Why?

12.2 Homework Two

12.2.1. A particle in Minkowski space travels along a trajectory:

z(7) = ar?
y(r) =7
z2(t) =0
(a) What are the spacelike components of the 4-velocity, U*?
Solution:
The spacelike components of four velocity is

B ox’

v or

= (2ar,1,0)
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O
(b) Using the relation U - U = —1, compute U°.
Solution:
The inner product of the four velocity vector U* = (UULU2U3) is
U-U=—U"?+ U + (U +(U%? =1
— (U’ 4+ 4’ +14+0= -1
= U" =£/2+ (2a7)2
This is the timelike component of velocity four vector. O
(¢c) What is the 3-velocity of the particle as a function of 77
Solution:
The spacelike components are given by
A 2 1
Vie = S 0
U V2 + (2a7)2 /2 + (2a7)2
O

12.2.2. (Schutz 3.24) Give the components of ((2)> tensor M“? as the matrix
0
1
2
1

O = N O

find:

(a) the components of symmetric tensor M () and antisymmetric tensor M7
Solution:
The symmetric tensor can be written as

M(eB) % (M 4 AP

When the indices are switched the elements of the tensor are

0o 1 2 1
0 -1 0 O
0 0 0 -2
0 2 1 0
Using this we get the symmetric form
[0 1 1 1/2
1 -1 0 1
(aB) _

M I 0 0 —1/2

/2 1 -1/2 0

Similarly the anti symmetric tensor is
0 -1 —-1/2]
MleBl —

0
0
1 0 0 32
/

These are the required matrices. O
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(b) the components of Mg
Solution:
This can be written with the metric tensor as

0 1 0 0
o o |—1 =1 0 2
M5 =900M™ =1 5 o 0 1
-1 0 -2 0
|
(c) the components of M/
Solution:
This can be written with th metric as
0 -1 0 0
1 -1 0 2
B — aB _
Ma™=9ae M7= 15 g ¢ 1
1 0 -2 0
|
(d) the components of M,
Solution:
The previous tensor can be used to calculate this
0 -1 0
s |-1 -1 0 2
Maﬁ - gaﬁMa ) 0 0 1
-1 0 -2 0
|

12.2.3. (Schutz 3.30) In some O , the vector U and D have the components

U — (1+t%,£2,V2t,0)
D — (z,5tx,V/2t,0)

and the scalar p has the value
p=a®+t*—y?

(a) Find U-U ,U-D , D-D. Is U suitable as four-velocity field? Is D?
Solution:
The components of U, are U, = (—(1 + t2),t2,4/2t,0) and the components of D,, are D,u =

(—x,5tx, V2t, 0) so the dot products are
U-U=UlUpu=(—1+t)2+t*+22 4+ 0) = -1 - 262 —t* +t* + 2 = 1
D-D=D!'D, = (-2 + 25t°2% + 2t* + 0) = 2*(25¢* — 1) + 2¢>
U-D=U"D, = —x(1+t*) + 53z + 2t* = 2(5t> — t* — 1) + 2¢

Since the inner product of U with itself is —1 its is suitable for a four velocity while D is not
(except possibly for fixed values of z and t). a
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(b) Find the spatial velocity v of a particle whose four-velocity is U,, for arbitrary ¢. What happens

(2)

to it in the limits ¢ — 0 and ¢t — oo?

Solution:
A Y 0
R T W IR R

In the limit ¢ — oo we get v = (1,0,0) and in the limit ¢t — 0 we get v = (0,0,0)

Find U,, for all «
Solution:
With the Minkowski metric the values of U, is Uy = (—(1 4 t)2,t2,v/2t,0)

Find U* g for all o, 8
Solution:
The vales are

2% 0 0 0
o _OUC _ |2t 0 0 0
P~ 98 ~ [v2 0 0 0
0 00 0

Show that U s = 0 for all 8. Show that U*U, g = 0 for all 3.

Solution:
«

For various values of 5 U U is
6:0::UQU,°‘:%(—(1+t2)2+t4+2t) =21 +1%) -2t + 43 +4t =0
B=1:UUg = %(—(1+t2)2—|—t4+2t) =0
B=2:UU% = %(—(1+t2)2+t4+2t) =0
B=3:UU% = %(—(1+t2)2+t4+2t) =0

We have U*U,, is the inner product of U - U and so U - U = U*U, = U,U® so the expression

UUq g = (U UY) g =0,V8

Find D? 4
Solution:
It is simply the divergence of vector D so we get

dr 05tz OV2t 90

B

== AL g
B ot + ox + dy * 0z

Find (U*DP) g for all a.
Solution:
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The components of tensor U*D? are

(1+t)z Ste(1+t2) V2t(1+t2) 0

UeDs — t2x 5t3x V23 0
V2tx 5v2t%x 22 0

0 0 0 0

Now the derivatives (U“D?) 5 has the components
a=0:2tz+5t(1 +1%) + 0+ 0 = 2tx + 5t(1 + t?)
a—1:2tx+5t° +0+0 = 2tz 4 5t°
a=2:V2z+5V22 + 0+ 0= v2z + 5v2¢
a=3:0

So the components are (U*D?) 5 = (2tx + 5t(1 + t2), 2tz + 53, /22 + 5v/2t2).

(h) Find U,(U*D?) s and compare result.
Solution:
We have the components of U, = (—(1 + #2),t2,1/2t,0) and we have obtained

M® = (U*D?) g = (2tz + 5t(1 + t?), 2tz + 5t°, V2 4 5v/2t%)

Un(UD?) g = Uy M
= (= (14 3)(2tx + 5t(1 + 1)) + t2(2tx + 5t°) + V2H(V 2wt + 5v/2t2))
= —bt
We see that this is equal to —D% and using the fact that U,U% = —1 we can rewrite
Ua(U*DP) 5 = =D’ = (U U*) D’

This shows that the associative property in tensors hold.

(i) Find p, for all a. Find p© for all «
Solution:
The components are

dp Op Op Op
P <8t’ 90’ 9y’ - (2t, 22, —2y,0)

The raised version is

pP = (=2t,2z,—2y,0)

12.2.4. (Schuts 4.17) We have defined o = ULU 8. Go to the non-relativistic limit and show that

at ="+ (v- V)

Solution:
Writing out the components of the above expression we get
our out ouUt oUt
= - U" U U? +
“ 0x0 + ox! + Ox? + Ox3

U3

266



CHAPTER 12. GENERAL RELATIVITY 267

The spatial components are

N axOU + 8301U + amQU + 8$3U

ai

In the non relativistic limit U = 1 and U® = v* where v* is the component of velocity so we obtain

. Ot ot ot o'

i T y 2
ot Tart eyt Tt
This expression can be rearranged into
] ) s ~ = “ 8 “ 8 ~ 8 .
a'=0"+ (v + 05 + k) - (Zax +ga—y + ké)z) vt

Since the nabla operator is the middle term in above expression we get
a' =0+ (v- V)

This is the required expression. |

12.2.5. Consider a stationary, ideal fluid of the form:

p 0 0 0
0P 0 O
[
™=1 0P o
00 0 P

For the moment, you should assume that the stress-energy tensor is constant in time and throughout
space

(a) Compute the stress energy tensor T7” in a frame moving at a speed, v with respect to th frame
along the x-axis.
Solution:
The transformation matrix is

vy 8 0 0
a8 v 00
Mo o0 10
0 0 0 0

The components of the transformed tensor are
T = AR [ATT]
= AL [AGTHO + ATTH + ASTH? + A5T")
Since the off diagonal elements of T#" are all zeros we get zeros for all j
77 = A [AFT™] + A [AFT"] + A [AST%2]) 4 A [A5T)

So we get the transformed tensor as

Vp+~v20*P ~N2vp+~2vP 0 0 Y (p+v2P) ~F*w(p+P) 0 0
Yup+~y*0P Y P++% 0 0 Yu(p+P) @*p+P) 0 0
0 0 P 0| 0 0 P 0
0 0 0 P 0 0 0O P

This is the required transformed tensor. O
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(b) Suppose the pressure is a fixed ratio to the density. Compute the stress energy tensor in the
moving frame for i) P = 0 (dust), ii) P= 1/3p (radiation ) ili) P = —p (cosmological constant).
Solution:
for P = 0 we get

Y’p Aop 0 0
Yvp y*?p 0 0
0 0 0 0
0 0 0 0
for P =1/3 p we get
72(p+};2%p) vzv(%p)l 0 0
Yu(3p)  VPp+3p) 00
0 0 ip 0
1
0 0 0 3p
for P = —p we get
p 0 0 O
0 —p 0 O
0 0 —p O
0 0 0 —p
These are the transformed tensor. g
12.3 Homework Three
12.3.1. In a flat space, the metric in spherical coordinates , 7,0, ¢ is
1 0 0
g = |0 r? 0
0 0 r%sin®0

12.3.2.

12.3.3.

12.3.4.

(a) Compute all non-zero Christoffel symbols for this system.
(b) Compute the divergence V<.,

Consider a vectro in 2-d space:
v=1

starting at » = 1,0 = 0, and moving aroudn the unit circle with constatn r = 1, but varying . The
assumption is that the vector itself should not vary.

Write, and solve a differential equation describing the changes in the components of v as you parallel-
transport it around the unit circle.

(Schutz 5.14) For the tensor whose polar components are A™ = r?, A" = rsinf, A% = rcos@, A% =
tan 6, compute

VAl = AMY 5+ ATV 5 + AFTY 45
in polars for all possible indices.
(Schutz 7.3) Calculate all the Christoffel symbols for the metric,
ds* = —(1+2¢)dt* + (1 — 2¢) (da® + dy® + d=?)

, to first order in ¢. Assume ¢ is a general function of ¢, x,y and z.
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12.3.5. A cosmic string is a theoretical construct whcih is infinitely long, and has a mass density per unit length
A. The coordinates describibg the spacetime surrounding a cosmic string are

t
R
ot =
o
z
and which has a metric:
-1 0 0 0
0 1 0 0
0 0 R%*1-4)) 0
0 O 0 1

(a) Compute the volume element, dV', near the cosmic string.

(b) Compute all non-zero Christoeffl symbols.

(¢) Compute the distance between two points separated by dz* = dR, and all other coordinates equal
to zero. From that, cmptute the distance from the string itself out to t distance R =1

(d) Compute the distance between two points, each R = 1 from the string separated by an angle d¢
(with all other dz* = 0) Using that, what is the total distance traersed by a particle covering a
circular orbit R = 1 around the cosmic string?

(e) Compare (12.3.5¢) and (12.3.5d) in the context of the normal relationship between radius and
circumference. That is, does C' = 2xr? if not, what should it be replaced with?

12.4 Homework Four

12.4.1. (Schutz 6.29) In polar coordinates, calculate the Riemann curvature tensor of the sphere of unit radius
whose metric is ggg = 72, gpp = 1% sin? 0, ggy = 0.
Solution:
The metric for polar coordinate on the surface of unit sphere is

1 0
0 sin?6

The christoffel symbols are given by

1
]‘—‘ﬁp - 59”0 (gllo"p + gpa,l’ - gVP,g-)
The only non zero derivative of metric is with respect to 6 so we get
0 06 L.
oo =597 (—9ps,0) = —5 sin20

Similarly the other non zero Christoffel symbols are

cos 0

%5, =T%49 =
99 9 sin @

And the Riemann tensor is given by
Raﬁpﬂ/ = F?#ng — ng gﬂ — F%H)y -+ ]_—‘O‘V’H

A A A A
Raﬁuv = Gax (FU[LF%V - FGV glt o Fﬂ#,u + Fﬁu,u)
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12.4.2.

Calculating

9o (qusrge - Pierg(ﬁ - Fgm, + Fge,qs)

sin? 0 (09,055 — T94T50 — T, + o )

Rgo40

— win2 ¢ 1o ¢
= sin 6(—F¢0F0¢—F9¢79>

29 1
= sin? 6 <COS + )

sin?@  sin?6

=sin% 0
Now we can permute the coordinate with the symmetry property to obtain
Reoop = — sin? 0 Rogpo = — sin? 0 Rogos = sin2 0

These are the non zero components of Riemann tensor.

(Schutz 6.30) Calculate the Riemann curvature tensor of the cylinder.
Solution:
The line element ins the cylindrical coordinate system is

ds? = dr? + r?d¢? + dz>

So the metric in is

Guv =

|
OO =
o 3o
= O O

The Christoffel symbols are given by

1
Ffjp - iguo- (gyg’p A gpa"y - gl/p}g->

The only non zero derivative of metric is with respect to 6 so we get
T 1 rr
oo = 59" (=gs0.) = =1
Similarly the other non zero Christoffel symbols are
1
F¢'r' 6= e or = —
r

And the Riemann tensor is given by
Raﬁy,’/ = Fgﬂrgu — F?V gl—l — Fg“)y —+ ]_—‘O‘V’H
A A A A
Raﬁ/,u/ = Gar (FU#FUV - ]-—‘cn/ g;t - ]‘—‘ﬂ}tvu + Fﬁu)u)
Calculating
R¢7’¢T = 9¢¢ (F§¢Fg’f‘ - Fg'rriz) - Ff(ﬁﬂ, + Ff’r,(b)
=2 (rij T =T8I0, —T%, + rjfw)

o b pé o
— (—erw—rwm)

— 2 1 1
Tt

=0

270
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Now we can permute the coordinates and with symmetry all the rest are zero too.
Rorrg =0 Rrgor =0 Rpgrg =0

So all the components of Riemann tensor are zero, showing that the surface of cylinder is a flat surface.
O

12.4.3. One way of describing the metric of a flat, homogeneous, expanding universe is:

-1 0 0 0

where a(t) is a function of time only, and the coordinates are

t

x
h =

Yy
z

(a) Compute all non vanishing terms of the Riemann Tensor.
Solution:

The Christoffel symbols are given by

1
Fl;jp = 59”0 (gump + ngW - gz/pﬁ)
The only non zero derivative of metric is with respect to ¢t so we get
1 .
thz = igtt (_gmwyt) =aa
These are true for y and z coordinates.
1

. 1 .
Iy, = §g“ (—gyyt) =aa I, = 59“ (—G2z1) = ad

Similarly the other non zero Christoffel symbols are
[ =T = 2
a
These are also true for y and z.

a a

— — z _ z _
Fyty—ryyt—f th—r zt —
a a

And the Riemann tensor is given by
R gy = T3,15, —T%,T%, ~ T3, +T5,
Ropuv = gax (Féu % —T2,T5, — Fgu,y + F/ABV,,J
Calculating
Riytet = Gao (Fizrtat —I5I% — FtIz,t + Fft,x)

o (T2,15, - T2,1%, ~ T4, +T4,, )
= a? (-T4,0% - T4,

NS
=a JR— — —
a2 a2 a

= aa



CHAPTER 12. GENERAL RELATIVITY

Now we can permute the coordinate with the symmetry property to obtain
thtw = —ada Rtawt = —ad Rtmtm = ad
Similarly the rest of the values can be calculated as

2.2
Ryzay = —a”a

272

The rest of them can be obtained by permuting the index using the (anti-)symmetry property.

_ _ _ _ _ 2.
Ropez = Rzyyz = Ryzzy =Ryzon = nyy:c = —aa

Compute all Non-vanishing terms of the Ricci Tensor.
Solution:
The raised version of Riemann tensor is

Ry = 9% Ropyu

The first index non vanishing term is

0 0 0
tmt;c = gttM+ gme;cttac + gyy%q_ _(]ZZM

I :_g
=a"*(—ad) -

Using the symmetry property and the elements of metric we get the rest of components of Riemann

tensor as
z _ @ z _ @
ttx a tat a
Rtyt =2 R? t = ¢
v a v a
. _ G
ttz a tzt a

Now the components of Ricci tensor in terms of elements of Riemann Rensor are

Rap = 9" Ry,
Specifically for Ry we get
0
Ry = gtt e+ 9 R+ gnytyyt + 97 Ri,
= —a2%b4a — a 2da — a"%da
= —3i/a

Similarly rest of the components can be calculated. They are
Ryz = Ry, = R, = ai + 24°

These are the components of Ricci tensor

Compute Einstein Tensor.

Solution:
The components of Einstein tensor are given by

1
G[U/ = R,LLV - §guuR

(12.1)
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The Ricci scalar can be calculated by contracting the Ricci tensor as

ad + a2

R=R{+R;+Ry+R:=6 —

(12.2)

Now the Einstein tensor simply is the substitution (12.3) into the (12.4). The first component of
this tensor is
i 16(ai+a*) _a?

1
Gu=Ry—-guR=-3—-+-—5—+-=3—
tt t 5 a+ 2 > o

Similarly the rest of the components can be calculated.

1, 6(ai+a?) )

1
Gl.L - R.LL - 7g.L‘LR = ad + 2&2 — 50

5 5 5 = —2aa —a
a
Gz = Gyy = G, = —2ai — &*
The raised version of Einstein tensor similarly are!.
3 a? a? + 2ai
Gl = - — G* = QY = G%% = —
2 a? a*
These are the required components of Einstein tensor. O

12.4.4. (Schutz 6.35) Compute 20 independent components of Rqg,. for a manifold with line element ds? =
—e22dt? 4+ e2Mdr? + 12 (d02 + sin? 9d¢>2), where ® and A are arbitrary functions fo the coordinate r
alone.

Solution:
Writing down the metric from the given expression for line element

gi=—€%  gm =€ ga=1%  gep=r1"sin"0
The inverse metric is
1 1
tt -2, rr __ _—2A, 00 __ . P _
= —¢ ; =e ; = —; = —
g g g 72 g r2sin® 0
The Christoffel symbols can be calculated by the expression
u 1 o
Fup = ig (guo#; + gpcr’,j - gl/pﬁa-)
Evaluating the these we get
t t
F'rt = Ftr = (I)J‘
b = —re M sin? 0 Iy, = 77‘672A+2¢.@,T Iy, =A, bo = —re~2A

1 1
I, = 5 sin20 rg, =1l = -

1 cos 6
[ ¢ _ = ¢ _ 1o _
FM_FW_T F%_F‘w—sinﬂ

The Riemann tensor is given by
R3,., = g#,u + FQV,M —T5.l8, — o, TG,

A A A A
Ra,@uu = g)\a(rﬁuw + FBV,;,L - Fap, gu - Fm/ gu)

IThis was solved mostly using Cadabra. https://www.physics.drexel.edu/~pgautam/courses/PHYS631/
einstein-tensor-expanding-universe.html


https://www.physics.drexel.edu/~pgautam/courses/PHYS631/einstein-tensor-expanding-universe.html
https://www.physics.drexel.edu/~pgautam/courses/PHYS631/einstein-tensor-expanding-universe.html
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Explicitly for Ry we get

Riper = gttantr
0
= [T 4 D T, - T,
= _62(19 [(I),TT’ + F;rl—‘:r - F:rl—‘:t]

_e2® [qm (@) - <1>7TA7T}

The rest of the components can be similarly calculated 2

Rtrrt - ((A,T - q),r) (I),’r‘ - (D,TT) 62@
Rtrtr - (_ (A r (I)J') CI)J‘ + CI)J‘T) 62(1)

)

Rigig —re~ 2 2%4in? 0%

Rioro :7’@72A+2q>®,r

Rippr = — re”2A+2%gip? 0,

Rigor = — 7’€72A+2¢‘1>,r
Rygre —rsin? OA

RT»QT»Q Z’I“A,T

Rt =(—(Ay —2,)0 .+ ,) e?®
Ryppr = — rsin? OA

Rroor = — 1A,

Repr = (A — @) @ — @) €77
Rorrg =—1A,

R97-97- ZTA,T.

Rogo4 :%TQ (em sin (20) (tan 0) ' — 2" cos (26) + cos (260) — 1) e 2
Rotot :T€_2A+2(I>‘I>,r

Rope0 =r? (1 — eQA) e ?Asin? 0

Roto = — T€72A+2¢q’,r

Ryrry = — rsin? OA

Ryo00 =r? (1 — eQA) e~ ?Asin? 0

R¢7~¢7~ Z’r‘sin2 GA,T

Rygpo =1 (e** —1) e **sin? ¢

Ryt —re 2 2%4in? 0%

Rytrp = — re 2A+2%4in?2 0,

These are the non zero components of Riemann tensor. O

12.4.5. (Schutz 7.7) Consider the following four different metrics, as given by their line elements:

i. ds® =

ii. ds® =

—dt? + dz?

+ dy2 +d2?;

— (1 —=2M/r)dt*> 4+ (1 — 2M/r)~1dr? + r2(df? + sin? fd¢?) where M is a constant.

2T did this using Cadabra. The detail of this exercise is at https://www.physics.drexel.edu/~pgautam/courses/PHYS631/
HW4Schutz6.35.html


https://www.physics.drexel.edu/~pgautam/courses/PHYS631/HW4Schutz6.35.html
https://www.physics.drexel.edu/~pgautam/courses/PHYS631/HW4Schutz6.35.html
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iii. ds? = —dt? + R?(t) [(1 — kr?)~1dr? + r(d6? + sin® 0d¢*?)], where k is a constant and R(¢) is an

(a)

~

arbitrary function of ¢ alone.

For each metric find as many conserved components p,, of a freely falling particle’s four momentum
as possible.
Solution:
The rate of change of momentum is given by
d 1
mPs _

- v, oo
dr - 2gua,ﬂp p

The momentum pg is conserved when g, = 0. From the given metric the conserved quantities
are

for i. : Dty Das Pys Pz
for ii. : Pty Do
for 4. : Dé

Write i. in the form
ds® = —dt® + dr® + r* (d6? + sin® 0d¢?)

From this argue that ii. iii. are spherically symmetric. Does this increase the number of conserved
components of p,?

Solution:

The coordinate transformation from Cartesian to polar is

x =rsinfcos¢ = dz = sinf + cos ¢dr + +r cos 0 cos ¢pdf — r sin 0 sin pde

y =rsinfsing = dy = sin 0 + sin ¢dr + +7r cos 0 sin ¢df + r sin 6 cos pde
z=rcosf = dzcosfdr = —sin 0df

Substituting these in the line element we get
di? = — dt* + dr?(sin® 0 sin? ¢ sin” 0 cos? ¢ + cos?)+
+d6? (r? cos® 6 cos® ¢ + 1% cos® 0 cos® ¢ + 1% sin” §)
+ dg¢? (7’2 sin? 0 sin? ¢ + 72 sin? 0 cos? gzﬁ)
= —dt* + dr® 4+ r* (d6* + sin® 0d¢?)
This is the required transformation in spherical form. O

It can be shown that for ii. and iii. a geodesic that begins with 6 = 7 and p? = 0- i.e., one
which begins tangent to the equatorial plane- always has § = 7 and p? = 0. For these cases use
the equation p - p = —m? to solve for p” in terms of m, other conserved quantities, and known
functions of position.

Solution:

Expanding the relation p - p = —m? we get

—m? = gu (1)) + grr (07)* + 900 (299)2 + 940 (P¢)2

Given 6 = 7/2 and p? = 0 we get

2 2
P = —m? — g (p")” + gos (P?)
Grr
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Since p! and p? are conserved substituting the corresponding metric values g,z gives the quantity
T

p
2 1-2M (. t\2 2 ()2
for i r_ | mmP = 00) A2 (0?)
R 1—2M]Jr
1— kr?
foriii;  pf = \/ T (T W) (RO 09)°)
These are the required expression for p” in terms of conserved quantities. O

(d) For iii., spherical symmetry implies that if a geodesic begins with p? = p® = 0, these remain zero.
Use this to show that when k = 0, p, is a conserved quantity.
Solution:
The rate of change of momentum is given by

dps 1 v o

m dr - 29ua,ﬁp p

M L (G 02 + G (07)? + 00,0 (072 + G0 (0)?)
dr - 2 git,r\P Grrr\P 966,r\D 9o \P

But for k =0, g, = 0 and g4, = 0 and given p? = p? = 0 we get

dp,
m

=0
dr

This proves that p,. is a conserved quantity. O

12.4.6. What fractional energy does a photon lose if it goes from the surface of the earth to deep space?
Solution:
When the photon goes from the surface of earth to outer space, it must lose the gravitational potential
energy that is has near the surface of earth. So the photon must lose this energy. For photon

(U°)?goo = —1
On surface of earth with weak field limit
goo = —(1 —2¢)
So near the surface of earth
Ul~14¢
In far space metric Minkowski ggg = —1 so in far space
Ul =1
So ratio of energy
1
Tre ¢

So change in energy is ~ ¢ On the surface of earth the gravitational potential is

o= _GM _ 6.672x 107" x 6.0 x 10*

~7x 10710
cr 6.4 x 106 x 9 x 1016

So the photon must lose this energy fractionally. O
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12.5 Homework Five

12.5.1. Consider a 1+1 dimensional space (¢, ) with the metric:

where k is a dimensional constant.

(a) This metric has a stress-energy source which is (potentially) non-zero. Knowing nothing else, what
is the scaling of the density p in terms of k7
Solution:
Since the exponent in the metric has to be dimensionless the dimension of & is

[k] = [L] = [M]
The dimension of density is
= 1 = (L1
From these two expressions
p~k
So, in terms of dimension only the density has to scale as the square of k. (|

(b) Compute all non-zero Christoffel symbols.
Solution:
The non zero derivative of the metric is in terms of z only and the only non zero derivative is

Jit,x = —kek®

The Christoffel symbols are given by

1
Flzfp = 59“0 (gua,p + gpo’,, - gyp’a)

The non zero Christoffel symbols are

1 1
TY, = =g" (—guo) = = - (—1) - —ke*® keF®
2 2
The other are
1
rt, =T =k
tr xt 9
These are the required non zero Christoffel symbols. |

(¢) A massive particle is instantaneously at rest ate x = 0 . What is the instantaneous acceleration
of the particle?
Solution:
The geodesic equation can be used to calculate the acceleration of the particle. From the geodesic
equation we have

oUH
—— = - ueu’

or of

For particle at rest v® =0, => U® = 0. Using U - U = —1 we get

(U0)2900 -1 UO — ekm/?
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Since the only non zero Christoffel symbols are I',, and I'f, we get

B’T = _FttUoUO = —§k€k ek
At the origin thus x = 0 we get
ou* 1
=—-k
or 2

This gives the acceleration of the particle.

Compute the non-zero components of the Riemann tensor.
Solution:
And the Riemann tensor is given by
Raﬁl»“/ =17 F%V - F?VFEM - gﬂ,y + F%”JJ,

op

calculating

T _ Pz 10 T 7o z T

Rzt = Fotht - Fotrt;z - Ftw,t + Ftt,x
x Tt x

—I'pl, + Ftt,z

1. 1 1
= _—"k-Zk kx *k2 kx
275 e +2 e

1
Zk26km

Similarly the other component of Riemann tensor are

1
Rtxtw = _ij
The other components are simply the cyclic permutation of the indices.
What are the non-zero terms in the Ricci Tensor and Ricci Scalar?

Solution:
The components of Ricci tensor in terms of elements of Riemann Tensor are
Raﬁ = gMVRZuB

Specifically for R; we get

0
Ry = 9“%"‘ 9" Ry
1
— 7]{:2 kx
ke

Similarly the other component R, is

0
R, = gttRitac +%

1
= k2
4
The Ricci scalar can be calculated by contracting the Ricci tensor as
1 1 1
R=Ri+ R =g" Rt + 9" Rog = — 1k — k% = — I

So the Riccis scalar is —1/2k2.

278

(12.3)



CHAPTER 12. GENERAL RELATIVITY 279

(f) What is the Einstein tensor?
Solution:
The components of Einstein tensor are given by

1
Gw/ = R,LLV - §guuR (124)
The first component of this tensor is
1 1 1 1
_ - :*k2 kx - 7161'77]{:2:
Gt = Ry 2gttR 1 e + 26 5 0

The other component is

1 1 1 1
Gaca: = Rxw - igwa = _Zk2 - 5 : _ikQ =0

So the Einstein tensor is identically zero. O

12.5.2. In the generalized linear metric we found in class:

—1-2p 0 0 0
0 1-26 0 0
0 0 1-26 0
0 0 0 1-2¢

where, for a non-relativistically moving source:
V2 = dn(p + 3P); V2¢ = 4mp

suppose you were in the interior of a spherically symmetric distribution with constant density and fixed

i - _1
equation of sate w = —3

(a) What is the acceleration on a test particle places a distance r from the center of the cloud. Would
it fall inward or outward?
Solution:

Since ¥ and ¢ are functions of r only we have non zero derivative of the components of metric
only with respect to . The Christoffel symbols are given by

1
Fl;p B igua (guo'yp T gpa’l, B ‘gyp50)

The non zero Christoffel symbols are

1 0
Fttr — Ftrt — 5gttt <gtt,r +M_54ﬁ)0

1 -1

= — —2 r
21+2y (=2¢.r)
_
1429
Similarly the other non zero Christoffel symbols are
Frtt = w,T T’I‘T = - ¢7T
1-2¢ 1-2¢

For a stationary particle v' =0 == U’ =0. Using U - U = —1 we get

(U%)2goo = -1 = U= /1+2¢
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The geodesic equation can be used to calculate the acceleration of the particle.

equation is

ou+

—— =-Th,uU’
or ap
The spatial acceleration of the particle is
our .
=I"wUU% = ———(1+2
g tt ) ¢( +2¢)

280

The geodesic

The quantity 9, can be calculated by using the fact that the Laplacian of ¢ is given. In a

2

spherically symmetric system V2 = 5,7, SO we get
0%y

Integrating once with respect to r we get

dy _

P
=1, =4np <1 + 3) T
dr p

Subsisting this in the expression for acceleration we get

our ., ~ 142y
57 —1_2¢(1+2w)—47rp(1+3w)r =
Given thatw:f% we get
our - 1+2y
or =0 1—2¢’0

So the radial acceleration of the particle is zero. Since for i # r, U* = 0 and I'"y = 0 all other
spatial components of acceleration is zero. So the spatial acceleration of the particle is identically

Zero.

O

What is the acceleration on a photon traveling perpendicular to the cloud also a distance r from

the center. Would it be lensed inward or outward?
Solution:

Since the photon is trailing perpendicular to the cloud (in a straight line), we can assume (without
loss of generality) the radial and azimuthal components of the velocity are zero, by choosing the
direction of travel same as the radial coordinate. So, U? = 0,U? = 0 The spatial acceleration of

the photon is

our

— Frtt UOUO + I‘\’I"TTUT‘UT
or

Subsisting the Christoffel symbols we get

our Y,

¢
or  1- 2¢(U0)2 B @y

Again by arguments of previous problem v, = 0, so we get

our ¢,
or  1-2¢

)3
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Again, in a spherically symmetric system V2 = g—:z, we can similarly obtain ¢, and ¢ by inte-

grating the Laplacian of ¢ with respect to r once and twice respectively.
@ =4mpr ¢ = 2mpr?

Since ¢ < 1, (U")? > 0 and ¢, = 4mpr > 0 the final expression for the acceleration will turn out to
be negative. Thus the acceleration would be inward and hence the photon will be lensed inward. [J

12.5.3. (Schutz 8.17)

(a) A small planet orbits a static neutron star in a circular orbit whose proper circumference is 6 x 10!
m. The orbital period takes 200days of the planet’s proper time. Estimate the mass M of the
star.

Solution:
For the purpose of estimation we can assume that Newton’s laws hold and that the time dilation
effect is negligible. In that limit the proper time is just the time measured by observer. From

Kepler’s third law we have
2 — An? 3
GM

If ¢ is the circumference, it is given in terms of radius by, ¢ = 27r subsisting ¢ we get

3
9 c 1 ¢

“an M= oG

3

So for the given planet
t~7=200days =1.728 x 107s ¢ =6 x 10''m
So the mass is given by

1 (6 x 10t1)3

M= =1.726 x 10%%k
27 - 6.672 x 10-11 (1.728 x 107)2 S

So the mass of the neutron star is 1.726 x 103%kg. O

(b) Five satellites are placed into a circular orbit around a static black hole. The proper circumferences
and proper periods of their orbits are given in a table below. Use the method of 12.5.3a to estimate
the hole’s mass. Explain the results you get for the satellites

circumference 25x10°m  6.3x10°m 6.3 x 107 3.1x10°m 6.3 x 107 m
proper period 8.4 x 1073 s 0.055s 2.1s 23s 21x10%s
Solution:
Using the method of 12.5.3a we get

3
¢(m) t) 2 () ko
2.5 x 108 8.4e-3  5.28 x 1032
6.3 x 106 0.055  1.97 x 1032
6.3 x 107 2.1  1.35 x 1032
3.1 x 108 23 1.34 x 1032

6.3 x 10° 2.1 x 103 1.35 x 1032

The obtained value for the mass seem to be converging towards 1.35 x 1032kg with the successive
increase in the orbital circumference. So further away the satellite, the Newtonian approximation
are more correct. O
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12.5.4. (Schutz 8.18) Consider the field equation with cosmological constant. With A arbitrary and k = 8.

(a)

Find the Newtonian limit and show that we recover the motion of the planets only if |A| is very
small. Given the radius of Pluto’s orbit is 5.9 x 102 m, set an upper bound on |A| from solar-
system measurements

Solution:

The field equation is

G + Agp = 87Ty,
Newtonian equation of motion is given by
V2¢ = 4mp
specifically the first component of field equation

Goo = 8110 — Agoo

In the Newtonian limit, since Tho = p and ggp = —1, I would expect in field equation term
A
p—=p+ =
8

I am assuming the limit to A comes from the maximum estimation of the mass density p in the
solar system. Even if the space wre empty and only cosmological constant were present of that
value, we would get the orbital radius of Pluto. So maximum value A < p x 87. The measured
density of the solar system is in the order

~13x10729L —13x 10*19]“—%
CcC m

and so maximum A should be the same order. O

By bringing A over th the RHS of Schutz eq 8.7 we can regard —Ag"” /87 as the stress-energy
tensor of ‘empty space’. Given that he observed mass of the region of the universe near our Galaxy
would have a density of about 1 x 10727 kgm? if it were uniformly distributed, do you think that
a value of |A| near the limit you established in 12.5.4a could have observable consequences for
cosmology? Conversely if A is comparable to the mass density of the universe, do we need to
include it in the equations when we discuss the solar system?

Solution:

If A is is in the order as predicted in 12.5.4a, and the density of galaxy is in the order of 1 x
1072"kg/m? then

A > pgalaxy

In that case p — p + % would be dominated by A, so we would have to observable effect of the
cosmological constant.

If the value of A is comparable to the density of the universe, then I would still assume that we
would need to include in the calculation of solar system. (]

12.5.5. (Schuts 10.9)

(a)

Define a new radial coordinate in terms of the Schwarzschild r by

— 1+M ’
r=r o .
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Notice that as » — oo,7 — r , while the event horizon r = 2M, where we have 7 = %M Show
that the metric for spherical symmetry takes the form

1-2M/7

2—_
ds” = [1+M/F

2 M 4
} dt* + [1 + 2_] [dF? + 72 dO?]
r

Solution:
The Schwarzschild metric is

—(1—2M/r) 0 0 0

B 0 1/(1—2M/r) 0 0

T = 0 0 r2 0
0 0 0 r2sin6

The transformation of the elements of metric can be obtained by
9pov = AﬁAZg;w

where the elements of the transformation matrix A% are given by

Since the given metric is diagonal, the only non zero term in the metric g,, are with p = v.
Expanding the metric transformation explicitly as a sum

9pv = AgAfigW

Given the transformation r — 7(1 + M/27)? and all other coordinates are unchanged we get

S M\?
Arafr‘r(T 1+2r)>

for all other coordinates t =t,¢ = ¢,0 = 6 so we get

0 _ AP — At —
Aj=AL=At=1

Thus expanding the transformation of the metric explicitly we get

2M
gt = MNAbgy = gu = — (1 - r)

Under the given transformation we have

_—_— N2 1—M,2
LM oM _r(l-Mj2r)? —2M i;) (12.5)

r 7 (1+ M/27)° 7 (1+ M/2r)? (1+4)°
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So under the transformed coordinate system we get

(1— M/27)?

I T M)

The nexe component of the metric is
M M\1? oM\
[ 2) (-] -2
2r 2r r
Using (12.5) we get in this expression we get
B KH M) (1 M)r (1 + M/27)?
grr 2r 27 )| (1 - M/2r)?
M2
= 1 _—
(%)
The next component of the transformed metric is
M\A
9o0 = AgAZ—g% = gog =1 =77 (1 + 27“)
The final non zero component is
M\
9p6 = AEAEQW =Ggpp = r?sin? § = 72 (1 + 27:) sin? 6

Thus the final transformed metric is

(1—M/27)?
~ M7 0 0 0
o = 0 (1+ M/2F)* 0 0
" 0 0 72 (1+ M/2r)* 0
0 0 0 72 (1+ M/2r)* sin? 0

The line element in this metric is given by

ds? — [1 —2M/7

2 4
M
2 =2 =2 102 =2 (1n2 2
1+M/r] dt* + {1+2J [dF* + 72d6” + 7 sin® 0d¢?| (12.6)

Which is the required expression. O

Define a quasi-Cartesian coordinates by the usual equations x = Tcos¢sinf, y = rsin¢gsinf ,
and z = 7 cos 6 so that , dir? + 72dQ)? = dz? + dy? + dz? Thus the metric has been converted into
coordinates (x,y,z), which are called isotropic coordinates. Now take the limit as 7 — oo and
show

2M 1 2M 1
dsQ:—[1—+O(2>}dt2+ {1++O(2>} (dz® + dy® + d2?)
r r r r

Solution:
Under the transformation given

dr® + 72df* + 7 sin® 0d¢?® = da” + dy® + dz*
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Under the limit 7 — oo, the metric element gz can be simplified

Similarly under the approximation g,..

M\* 2M 1
gm»:<l+> :1++O<2>
27 5 T

Subsisting this in the line element expression (12.6) we get
2M 1 2M 1
7 T T T
This is the required expression. O
(c) Compute the proper circumference of a circle at radius 7
Solution:

The circumference is given by the total distance traveled by a particle going at a constant distance
7 from the center, which is the length of the line under ¢ : 0 — 27 The line element is

2 2
ds” = gz4do
So the total circumference is
27
M\* M\?
2r 2r
0
Which is the proper circumference. (|

(d) Compute the proper distance in traveling from 7 to 7 + dr.
Solution:
The line element is

d82 = gffd'F2
The length going from 7 — 7 + d7 is
M\* M\?
d - Ffd_ - 1 - d_ - 1 - d_
S \/ grFrdr (+2r) T (+2r) T

This gives the distance going from 7 — 7 + dr. O
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12.6 Homework Six

12.6.1. (Schutz 11.7) A clock is in a circular orbit at » = 10M in a Schwarzschild metric.

(a) How much time elapses on the clock during one orbit?

Solution:
The proper time and the interval are related by the expression dr? = ds2. For circular orbit
dr = d¢ = 0 so we get

dr? = ds* = ¢%?(Uy)?d¢® = dr = U%d¢
But for circular orbit the quantity py = mL thus we obtain
pe = Lpo —gooPs _ L
m

m 2

The quantity L2 = —2"__ substituting these we get

1-3M/r
1 Mr
¢ _
v T2\ -3M
T 27 1 27 4(1 3M/)
/r — r
0 0 0

Noting that, the integrand is independent of ¢, for circular orbit at » = 10M we obtain

The time elapsed is given by

T =27

1000M3 ( 3M
M 10M

) = 2r10vV7M
This is the time elapsed in the clock. O

It sends out a signal to ta distant observer once each orbit. What time interval does the distant
observer measure between receiving any two signals?
Solution:
The time elapsed for a distant observer is the coordinate time for the Schwarzschild metric. If
it sends signal every orbit, the time elapsed for distant observer is the coordinate time for one
full orbit. To find the coordinate time we have to get expression for dt = f(x)d®, where ¢ is the
coordinate time. From the definition of the ¢ component of four velocity

dé _ e _P° grobe _ goop _ L

dr m m 72

Similarly from the 0th component of four velocity we get

dt o _P°  oobo o0, £ £
dr v m-_J m Y (=E) 1—-2M/r (12.7)

dtdt/dr  (rP\Y?
d¢  do/dr \ M
Now that we have obtained the functional form connecting the coordinate time and azimuthal
angle. We can integrate to find
1
3\ 2
t=2r—
()

Combining these two we get
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For » = 10M we obtain

3 1000 M3
t=2m/ TM - 2m/% = 2710v/10M1. (12.8)

This is the coordinate time that passes for one orbit which is the time measured by the distant
observer and is also the time it elapses for distant observer for a complete revolution. O

A second clock is located at rest at » = 10 next to the orbit of the first clock. How much time
elapses on it between successive passes of the orbiting clock?

Solution:

The time is dilated in the orbiting clock by the time dilation factor which is simply

& g = VT—2Jr

dr
2M
F=4/1- "¢
r

Substituting the coordinate time expression form (12.8) we get

Now the proper time is given by

2M r3
T=14/1-— 7271' i (12.9)
Substituting » = 10M we obtain
T = 21mV8M.
This gives the time elapsed in the stationary clock as the clock makes one orbit. |

Calculate (12.6.1b) again in seconds for an orbit at » = 6M where M = 14Mg. This is the
minimum fluctuation time we expect in the X-ray spectrum of Cyg X-1: why?

Solution:

For r = 6M substituting » = 6 M in (12.8) we get

t = 27v/216M = 1276 - 140,

The mass of sun Mg = 1.9 x 103%kg = 1.476 x 103m. Substation these

L 1271/6 - 1.476 x 10°

108 = 0.00636s = 6.36 x 10735

this is the time elapsed. O

If the orbiting ‘clock’ is the twin Artemis, in the obit in (12.6.1d), how much does she age during
the time her twin Diana lives 40years far from the black hole and at rest with respect to it?
Solution:

We already have for a circular orbit from (12.7) we have

dt E

&=
T

For a stable orbit in the Schwarzschild metric we have
1—2M/r

V1-=3M/r

E=
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Substituting we get
dt 1

dr — \/T—3M/r

Solving this differential equation we get

/dT:/,/l_%dt
T
—t\/T
T

T = — = 28.28yr
NG Y

This is the age of Artemis when her twin Diana lives 40yr. ]

Setting r = 6M gives

For t = 40yr we get

12.6.2. (Schutz 11.21) A particle of m # 0 falls radially toward the horizon of a Schwarzschild black hole of
mass M. The geodesic it follows has E = 0.95

(a) Find the proper time required to reach r = 2M from r = 3M.
Solution:
We have for a massive object the radial motion near the Schwarzschild metric satisfies:

(&) -#-(-%)

r:/L (12.10)
E?—1+2M

Making substituting o = E? -1 we get the following integral

d
S

The proper time is then given by

The integral is

oM
NG 2M asinh (\/ix\/ﬁﬁﬁ) . rd
T = -
av2M + ar a3 V2M + ar
3M
. Veva
C 3BME L 2\2M3 N 2v3M:  2/aM} | 2Masinh (V&) 2M asinh ( 2 a)
T V3BMa t2M  V2Ma+2M  aV3Ma +2M  av2Ma + 2M ol ol
Substituting o = 0.95% — 1 we obtain
T=11917TM

This is the required time for the journey from 3M to 2M for a infilling particle. g
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(b)

Find the proper time required to reach r = 0 from r = 2M.
Solution:
Similar to previous part the proper time required is

e V2T
OM /7 2M asinh (W) . rs
. _
av2M + ar o 2M + ar
2M

o 2v2M N 2v/2M 3 2M asinh (v/a)

~ V2Ma+2M  ov/2Ma+2M a3
Substituting a = 0.95% — 1 we obtain

T =1.3745M

This is the required time for the journey from 2M to center for a infalling particle. |

Find, on the Schwarzschild coordinate basis, its four-velocity components ate r = 2.001M.
Solution:
For radially moving object U? = U? = 0. The timelike component is given by

~ E 0.95
0 00 —
U’ =—¢g Ef1 5~ 7 5 1900.95
T 2.001

The radial component can be obtained by reusing (12.7) as

~ 2M 2
(U)?=E? — <1 - T) = Ur= \/0.952 — 1+ 5507 = 0-949
Thus the four velocity is
1900.95
Un — 0.5())49
0
This is the component of four velocity at r = 2.001M |

As it passes 2.001M , it sends a photon out radially to a distant stationary observer. Compute
the redshift of the photon when it reaches the observer.

Solution:

The energy observed by the distant observer is given by

Eops = U -p=—(=Upp’ + U,p")

We can calculate the component p” by using the fact that photon is massless. Since for photon
we have

p° = —m?2=0
Expanding the dot product of the momentum we get
gtt(Pt)Q + grr(pT)Q =0

But we have p, = F so we can rewrite this as

tt 2 r\2 __ ro__ gtt _ 1_2{r\4 _
g ()" + grr(")° =0 = p' = =T s B =FE
rr _T
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Substituting this in the observed energy expression we get
Eobs = (Uop® = Upp”) = (U°po — Upp") = E(U° = U,)

But U, = ¢,,,U" = #M/T substituting UY = 1900.95 and U™ = 0.949 we get,

0.949
2

Eope = E (1900.95 + ) = 3801.95F

~ 2,001

This gives the observed energy of the photon. So the redshift factor is simply
Eons — E 3801.95E — E

= = 3800.95
E E
Which is the required redshift factor. O
12.6.3. Using the relations that we derived in class:
2M M
Qy_stretching = FA?J and Qx-compressing — Ti?’Ax

Throughout this problem, assume that you dropped from rest at infinity.

(a) Find the smallest black hole in which you could survive long enough to pass the event horizon.

Solution:
In the event horizon r = 2M. The maximum acceleration that human can survive is a.,nq: ~ 99.
So we get
M Ax
Omax = ——=Ax — M =
ma (2M)3 40 max

Substituting Az ~ 1m g ~ 103z we get

/1 1
M=\—=—=s
360 6410
Since 1s = 299792458m and 1m = 1.34 x 10%"kg we get

1
M = —— 299792458 - 1.34 x 10?7 = 2.12 x 103*kg = 1.07 x 10* M,
6v/10 g ©

This is the most massive black hole one can survive near the event horizon. O

(b) For a 1M black hole, how long does it take between the time you feel mildly uncomfortable (tidal
force between head and feet is 2¢g) and you die? This should be in proper time, of course.

Solution:
The tidal force will stretch so we have from the given stretching expression
1
2M 2MAy\ 3
Qy_stretching = TigAy = r= ( a )

For just being ‘uncomfortable‘ a = 2¢g gives

T = —_—
20
Substituting M = 1.98 x 103%kg and Ay ~ 0.5m

r=4.56 x 10°(s%kg)*/?



CHAPTER 12. GENERAL RELATIVITY 291

Substituting 1s = 299792458m and 1kg = 7.42 x 10~28m we get
r = 4.56 x 10°(299792458? - 7.42 x 1072%)1/3 = 1.85 x 10%m
For dying a = 9g we get through similar process
r=2.76 x 10°(s%kg)'/3 = 2.76 x 10°(299792458% - 7.42 x 1072%)1/3 = 1.12 x 10%m

The proper time to travel between these two distance can be obtained by the expression as in
Equation. (12.10) above

/ dr
T = —_——
VE?2—142M

Here E is proportional to initial energy for simplicity assuming EF=1we get

[3
/ Vrdr = L2 rs = Q r
VoM VoM 3 3 VM
Proper time between these two distances is
_[ve [P
3 VM
1

For M = 1Mg we get

1.12x10°
Vet 15 x 107 (T v
T=|== =4. —
3\ 1.98 x 10% | kg
1.85x106
Substituting 1kg = 7.42 x 1072m and 1m = 555-4>==s we get

T=4.45x 1077 (1.34 x 1027m2)% =445x1077-1.22 x 10°s = 5.44 x 1072

This gives the time for mild uncomfortably and death. O

(¢) How about a 10Mg
Solution:
Repeating the same process for M = 10Mg we get

ry = 9.83 x 10° (skg)""* = 3.98 x 10°m

ra = 5.95 x 10° (s*kg) /* = 2.41 x 10°m

1/3
r=4.44%1077 (Z‘) — 5.426 x 102
g

So for a 10My the time interval for the falling person from mild uncomfortability to death is
5.42 x 107 2s. O

12.6.4. (Schuts 12.9)

(a) Show that a photon which propagates in a radial null geodesic of the metric, , has energy —pg
inversely proportional to R(t).
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Solution:
The given metric is

-1 0 0 0
2
" 0 0  R*t)r 0
0 0 0 R2(t)r?sin” 0

For radial geodesic U? = U? = 0. Since photon is massless we get
pp=0= ¢"po)*+9"(p)* =0
Simplifying gives

rr 2
2 9 2 R*(t) 2
- _ 22 = - 12.11
(m0)? =~ 00)* = T 00) (12.11)
We now have to find the relationship between p,. and the element of metric. The next relationship
comes from the geodesic equation as

. p’p”
B TH
pr=1, 20
Specifically for = 0 we get
.0 _ 10 p’p”
P = pr pO

We need the Christoffel symbols for this. The Christoffel symbols are given by
I — o
vp ig gucryp + gpa’l, - gyp’a

The only required Christoffel symbols are Fg 3

1
ng = 5900 (guo7p + ngJJ - gup70>

Explicitly

2 1— kr? 1—kr?

T = 10% (g0 4 G0 — Grrg) = %(_1) (_at ( R2(t) )) _ R()R()

Substituting this in the geodesic equation we get

o _ _RORO) pp
1—Fkr2 po

But from (12.11) we have (p")? and substituting we get
o RORE (1 b))
1— kr? R2(t)p"
-0 R(t) ,

R(t)"
This is a differential equation , solving we get

0
c;% = _ai'f(gt)) In(p®) = —In(R(t)) = p’ x %
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Lowering the index of p° in the LHS we get

1

0 0
_
Po = gooP P = po X R(t)

Which is the required expression. |

(b) Show from this that a photon emitted at time t. and received a time ¢, by observers at rest in the
cosmological reference from is redshift ed by

R
1+2z=

Solution:
For an observer at rest v' =0 = U’ =0. Using U - U = —1 gives

1
go(U°)? = -1 = U= /[-— =1
goo

Eobs = —p - Uobs = —poU" = —pyo

thus the observed energy is

calculating the redshift we get

1 1

_ Eobs(te) - Eobs(tr) _ " R(to) + R(t,) _
Eobs(tr) _%
Simplifying
1 1

+ R(t,

1 4z=14 0 TRED R( )

R
This is the required expression. O

12.6.5. (Schuts 12.20) Assume that the universe is matter dominated and find the value of ps that permits
the universe to be static.

3
(a) Because the universe is matter-dominated at the present time, we can take p,,(t) = po [R—‘z)}

R(
where the subscript 0 refers to the static solution we are looking for. Differentiate the ‘energy’
equation

1. 1 4
532 = —5k+ gwRQ (Pm + pA) (12.12)

with respect to time to find the dynamical equation governing a matter dominated universe:

.8 4
R= §7T,0AR — g7rp01~23R—2

Set this to zero to find the solution

1
PA—2P0

For Einstein’s static solution, the cosmological constant energy density has to be half of th matter
energy density.
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Solution:
As instructed, differentiating with respect to tie we get

1 . . 8 . 4
52 RR= g7rRR(pm +pa) + gwRQ (pm + pr)

. 8 4 . )
R = gWR(Pm +pa) + gﬂRQ (Pm + Pn)

But the functional form of p,,(t) is given differentiating we get

it POR
R4

pm:_3

And for matter dominated universe pp = 0 substituting these

RR = gwRR (pm + pa) — 4w jo2
.8 po R}
R= gwR (pm + pa) — 4w 2

Which is the required dynamical equation. At current time we have R = Ry so we get

8 8 4
R= 2R (po + pa) —4poRo = 3 0o — 3 Ropo

Setting this equal to zero we get
8 4
-R = -R
3 0PA 3 00

‘We obtain

PA = SP0
This is the required expression. |

Put our expression for p,, into the right-hand-side of (12.12) to gen an energy-like expression
which has a derivative that has to vanish for a static solution. Verify that the above condition of
pa does indeed make the first derivative vanish.

Solution:

Substituting p,, we obtain

1. 1 4 poRS 1
“R?=——k+ -nR? 0 4~
2 2" 3" < RN

For static solution the second term on the right has to have vanishing derivative because the first
being constant has zero derivative already. Checking

O [4 (RS 1 \] 4 o [(R R\] 4 R
aR{?,”R(RSJrz”O =3™r \R T2 )| T3 | TR TR

For initial time we have R = Ry this expression evaluates to zero. (|

Compute the second derivative of the right-hand-side of (12.12) with respect to R and show that,
the static solution, it is positive. This means that the ‘potential® is a minimum and Finstein’s
static solution is stable.
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Solution:
The second derivative is

4 9 R3 4 R3

For today R = Ry and we get

4 R} 4 R3
= 220 41| =2 220 41| =4
| (2R )] = o (2 +1)] e

For p > 0 the second derivative is positive. This means the solution is stable.
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