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1 GalFlex concepts

GalFlex is an open-source Python module that simulates second-order weak gravitational lensing effects
(flexion), along with shear and convergence, on simulated source images. The module is meant to provide
a quick, easy, and intuitive user interface for simulating images from input catalogs or directly from a
file. By keeping dependencies strictly in Python, GalFlex forgoes a building process, and does not have
a complicated structure. GalFlex operates in real-space, drawing a finely meshed matrix, and performing
the second-order lensing effect based on input shear and flexion values. The images are represented in the
form of a 2-dimensional, NxN numpy array. These allow greater transparency in the heart of the code, with
operations running almost as quickly as the equivalent C code.

1.1 baseImage Class

Most of the functionality of the GalFlex module is in the baseImage class. This is the base class for defining
the interface with which all GalFlex image classes access their shared methods and attributes.

Images are composed of a 2-d, row-contiguous numpy array of NxN shape and a pixel scale. Representing
sky coordinates, this scale is defined by a parameter xmax, and the image x,y axes run from -xmax to xmax,
with the origin centered at (0,0).

An Image can be constructed from either an existing NxN numpy array, or created from a number of predefined
profiles (such as a Sersic profile) which inherit all the baseImage methods:

import galflex

xmax = 20.0 #Coordinates range from -20.0 to 20.0 (arcsec) on both axes

array = numpy.ones((100,100)) #Sample NxN array

gal1 = galflex.baseImage(array,xmax)#Create instance

xmax = 15.0

n = 1.3 #Sersic index

re = 2.3 #Half-light-radius (arcsec)

gal2 = galflex.Sersic(xmax,n,N=500,flux=1.e5,re=re) #Create Sersic intensity profile
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# Copyright 2013 Justin Bird:

# http://physics.drexel.edu/~jbird/galflex/

#

# This file is part of GalFlex: The flexion simulation module

#

# GalFlex is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# GalFlex is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with GalFlex. If not, see <http://www.gnu.org/licenses/>

#

"""

Example code demonstrating GalFlex being used within GalSim’s pipeline.

This is an example showing the method of integration of GalFlex with the GREAT3 code GalSim.

An base galaxy image is produced from GalSim, and drawn to a numpy NxN array with high precision.

This is lensed by GalFlex, including 2nd-order flexion terms, and returned to GalSim for

further manipulation.

"""

import galsim

import galflex

#Image properties

N = 500 # Subdivisions for image (pixels)

pixel_scale = 0.2 # arcsec / pixel

xmax=N*pixel_scale/2.0 # Largest coordinate in image (from -xmax to xmax)

#Source properties

gal_flux = 1.e6 # total counts on the image

gal_r0 = 2.7 # scale radius (arcsec)

#Create source

gal = galsim.Exponential(flux=gal_flux, scale_radius=gal_r0)

#Draw intensity distribution to double precision.

#A finer mesh will result in a more accurate lensing.

#Define draw image

image = galsim.ImageD(N,N)

#Draw image

gal = gal.draw(image, dx=pixel_scale,normalization="flux").array

#Create GalFlex instance

gal = galflex.baseImage(gal,xmax)
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Further details can be found in the API at the end of this reference guide.

The actual numpy array can be accessed by using the instance ‘.image‘ attribute. The individual elements in
the ‘.image‘ attribute are indexed as gal.image[y,x], matching the standard numpy convention of [row,column].

1.2 Lensing routine

The galflex lensing function represents a second-order lensing effect on a 2-dimensional image. Operating
in real space, the class method .lens() acts on a baseImage class NxN numpy matrix, and performs the
second-order lensing effect based on input convergence, shear, and flexion values. For an accurate lensing
application, an image must be finely meshed into the NxN array.

The process consists of a linear interpolation scheme, as follows:

• Convert the index value of the array to the appropriate coordinate value.

• Apply the second order Taylor expansion, using input lensing values, to the image coordinates:
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• Each coordinate pixel will map to a new location on our foreground plane, not necessarily coincident
upon the index coordinates of the background plane. As such, a weighting factor is introduced, where
the intensity contributions from surrounding background cells are summed to the new coordinate pixel.

• For foreground pixels that would require background pixels as contributors, but those pixels are outside
the range of the image provided, an approximation to the background sky intensity is assumed. This
approach requires the galaxy image to be fully encompassed by the postage stamp domain.

Lensing parameters used are:

• κ convergence (in %)

• γ1 shear1 (in %)

• γ2 shear2 (in %)

• F1 spin-1 flexion1 (units of arcseconds−1)

• F2 spin-1 flexion2 (units of arcseconds−1)

• G1 spin-3 flexion1 (units of arcseconds−1)

• G2 spin-3 flexion2 (units of arcseconds−1)

These are specified in one of two ways.

• Each parameter can be set individually when calling the method [default=0.0]

gal.lens(kap=0.0, gamma1=0.0, gamma2=0.0, f1=0.0, f2=0.0, g1=0.0, g2=0.0)

• A list of 7 (float) parameters can be specified as: params=list name:

params = [kap,gamma1,gamma2,f1,f2,g1,g2]

gal.lens(params = params)
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The following is an example usage:

import galflex

xmax = 20.0 #Largest image axis coordinate (arcsec)

n = 1.4 #Sersic profile index

gal1 = galflex.Sersic(xmax,n,N=500,flux=1.e5,re=3.4) #Create 1rst Sersic image profile

#Convergence = 20%, shear1 = 25%, Spin-1 flexion1 = 0.001 arcsec^-1

params = [0.20,0.25,0.0,0.001,0.0,0.0,0.0]

gal1.lens(params=params)

gal2 = galflex.Sersic(xmax,1.6,N=500,flux=2.3e6,re=2.7) #Create 2nd Sersic image profile

gal2.lens(kap=0.47, gamma1=-0.3, f1=0.02)

It is important to keep in mind that flexion signal strength is dependent on the scale of the image. If the
magnitude of flexion multiplied by the image scale is comparable to 1 or greater, there will be unphysical
multiple image effects. This can be quantified as:

(|F| or |G|) ∗ xmax << 1

Also note:
The gravitational lensing of an image is a noncommutative process, so both shear and flexion must be added
to an image using one routine.

2 API

2.1 Image handling

class baseImage()

Initialization:

gal = galflex.baseImage(array, xmax)

This is the base class for defining the interface with which all GalFlex image classes access their shared
methods and attributes.
Images are composed of a 2-d, row-contiguous numpy array of NxN shape and a pixel scale. Representing
sky coordinates, this scale is defined by a parameter xmax, and the image x,y axes run from -xmax to xmax,
with the origin centered at (0,0). An image can be constructed from either an existing NxN numpy array, or
created from a number of profiles (such as a Sersic profile) which inherit all the baseImage methods.
Multiple images may be added together by simple + operation, and multiplied by a scalar by simple * oper-
ation.

Class methods:

• gal.copy()

Return a deep copy of instance.
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• gal.getFlux()

Return sum of pixel values of image. This may not be equal to the ’true’ flux if the intensity profile is
poorly sampled or is rapidly varying (i.e. high Sersic index).

• gal.setFlux(new flux)

Set flux of image to the specified value

• gal.addGaussianNoise(sigma=1.0,mean=0.0)

Add Gaussian noise to the image, centered at mean with standard deviation sigma. Performs on
a per-pixel basis.

• gal.addPoissonNoise(sky level)

Add Poisson noise to the image, based on the pixel fluxes. A sky level can be specified per pixel,
where the Poisson noise is derived from the sum of the image and the sky, and then the sky level is
subtracted from the image again.

• gal.plot(title=‘Lensed image’, units=‘Arcseconds’)

Convenience method for simple viewing of images. Using matplotlib.pyplot, intended as a vi-
sual aid in comparing images. Accepts simple arguments for changing the graph title and coordinate
units if necessary. Returns a matplotlib figure object. The user can also use the class method
gal.plot(...) or the function galflex.plot(instance,...)

• gal.writeFITS(filename,odir=None,clobber=True)

Writes image to a FITS file using pyfits. This can be called directly as a function: galflex.writeFITS(image,...)
or as a baseImage method. If called directly, accepts either a single instance or a list of instances as
the first argument.
Automatically creates a directory ‘output’ in the run directory where the FITS file is saved. If odir

is specified, that directory will replace ‘output’.

Setting clobber=True when filename is given will silently overwrite existing files.

• gal.add(*args)

Another way for adding images together. Accepts baseImage class instances. Takes arguments in
comma format, i.e. gal.add(img1,img2,img3...) or list format.

• gal.lens(kap=0.0,gamma1=0.0,gamma2=0.0,f1=0.0,f2=0.0,g1=0.0,g2=0.0,cx=0.0,cy=0.0,**kwargs)

Performs lensing on an input image. Can either specify parameters individually when calling, or
provide a list params=[] of 7 lensing parameters: convergence, shear1, shear2, F-flexion1, F-flexion2,
G-flexion1, G-flexion2 (flexion in inverse arcseconds). Accepts positional arguments for expanding
about the center point of the galaxy. See source file for complete details.

• gal.shift(cx,cy)

Shifts the entire image according to entered coordinates.

• gal.SISlens(einRad,rc,beta)

Performs a fully analytic gravitational lensing by a singular isothermal sphere (SIS) lens profile. This
functionality is separate from the lensing by other GalFlex halo profiles, which only simulate distortion
to a second order Taylor expansion of the deflection angle.
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class Sersic(baseImage)

Initialization:

gal = galflex.Sersic(xmax, n, N=500, flux=1.0, q=1.0, phi=0.0, cx=0.0,cy=0.0, **kwargs)

Initialization class for a Sersic profile baseImage. Inherits all baseImage methods. Supports an elliptical
Sersic intensity profile of form:

I(r) e−bn((r/re)1/n−1)

or
I(r) e−(r/r0)1/n

depending on input arguments, with:

xmax - Largest coordinate value along an array axis which runs from: (-xmax) to (xmax).

n - The exponent of intensity profile.

N - Integer length of NxN numpy array. [default=500]

flux - Total photon flux in image. [default=1.0]

q - Axis ratio of galaxy image (0.0 to 1.0), defined by x:(y*q). [default=1.0]

phi - Orientation angle of galaxy image, in radians. [default=0.0]

cx - Centroid offset in x-direction, units of xmax [default=0.0]

cy - Centroid offset in y-direction, units of xmax [default=0.0]

User must also specify one of the following after positional arguments:

re - Effective radius of the isophote containing half the total flux (half-light-radius).

r0 - Scale radius where the intensity drops to 1/e the central peak value of the spherical profile.

bn as a variable that depends on n, and can be modeled in the range 0.5 < n < 8 as bn = 1.992n− 0.327.
r is defined as r =

√
x2 + (y ∗ q)2.

The intensity profile takes on a few familiar forms at certain exponent values:

• n = 0.5 specifies a Gaussian profile

• n = 1.0 specifies an exponential profile

• n = 4.0 specifies a deVaucoulers profile
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2.2 Lensing halos

class ellipticalHalo()

Initialization:

halo = galflex.ellipticalHalo(einRad, exponent=0.5, softening=0.0, q lens=1.0, beta=0.0)

This is a class for a softened, elliptical, power-law potential halo profile.
Physical properties of the halo (such as mass, concentration, etc.) are contained within the Einstein radius
term, so these are not specified. The NFWlens class, however, does use the physical properties of the lens
directly.

The potential is of the form:

φ = θE
√
s2 + x2 + (y/q)2

α

with the (float) parameters specifying

einRad (θE) - Einstein radius of the lensing cluster (in arcseconds).

exponent (α) - Power of the potential. Defined between 0.0 < exponent < 1.0 [default=0.5 for SIS]

softening (s) - Softening term for lensing potential (arcsec). [default=0.0]

q lens (q) - Axis ratio of the projected equipotentials of the lens, defined by x:(y/q). Must be defined
between 0.0 < q <= 1.0 [default=1.0]

beta - Standard rotation angle of the lens profile (radians). [default=0.0]

Class methods:

• params = halo.getParams(**kwargs)

Calculates and returns the lensing values params = [κ, γ1, γ2,F1,F2,G1,G2] as a list of 7 values with
flexion in units of inverse arcseconds, at a specified position around the lens.
Must specify either a pair of x,y coordinates, or a radial distance and position angle.

– xc= Position in units of the image coordinates (usually arcsec).

– yc=

–or–

– rc= The radial distance from halo center (usually arcsec)

– angle= Position angle around lens from x-axis

– angle unit= The units of angle as a string (’degrees’ or ’radians’)

class NFWlens()
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Initialization:

halo = galflex.NFWlens(mass,conc,z,omega m=0.3,omega lam=0.7,omega r=0.0,omega c=0.0)

Class for spherical NFW halos. Can compute the lensing fields convergence, shear, and flexion of a NFW
halo of given mass, concentration, redshift, and cosmology parameters. No mass-concentration relation is
employed.

Based on the GREAT3 GalSim NFW halo profile.

The cosmology to compute angular diameter distances can be set by providing Ωm, ΩΛ, Ωr, Ωc. By default,
Ωm = 0.3, ΩΛ = 0.7, all else = 0.0.

Initialization parameters:

mass - Mass of halo defined using a spherical overdensity of 200 times the critical density of the universe,
in units of M solar/h.

conc - Concentration parameter of halo, i.e., ratio of virial radius to NFW scale radius.

z - Redshift of the halo.

omega m - Ωmatter [default=0.3]

omega lam - ΩΛ [default=0.7]

omega r - Ωradiation [default=0.0]

omega c - Ωcurvature [default=0.0]

Class methods:

• halo.getKs(z s)

Returns lensing strength as a utility. Takes the redshift of the source.

• halo.Da(z,z ref=0.0)

Used internally, but can be used as a utility. Computes angular diameter distance between two redshifts
in units of c/H0. In order to get the distance in Mpc/h, multiply by 3000. Takes 2 redshifts.

• halo.getConvergence(r,phi,z s)

Calculates convergence field of the halo at a specified radial position (arcseconds), assumed to be
post-lensing, and an angular position around the lens (in radians). Also takes the redshift of the
source. Returns κ

• halo.getShear(r,phi,z s)

Calculate shear of halo at specified positions (not reduced). Returns γ1, γ2

• halo.getFlexion(r,phi,z s)

Calculate flexion of halo at specified positions (units of inverse length, not reduced). Returns F1,F2,G1,G2
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• halo.getParams(r,phi,z s)

Calculate convergence, shear, and flexion of halo at specified positions, return as a list of 7 parameters
in order [κ, γ1, γ2,F1,F2,G1,G2].

class SIS()

Initialization:

halo = galflex.SIS(einRad)

Class for a singular isothermal sphere halo potential profile.

Physical properties of the halo (such as mass, concentration, etc.) are contained within the Einstein radius
term, so these are not specified. The NFWlens class does use the physical properties of the lens directly.

The spherically symmetric potential is of form:

φ = θEθ

Class methods:

• params = halo.getParams(**kwargs)

Calculates and returns the lensing values params = [κ, γ1, γ2,F1,F2,G1,G2] as a list of 7 values with
flexion in units of inverse arcseconds, at a specified position around the lens.
Must specify either a pair of x,y coordinates, or a radial distance and position angle.

– xc= Position in units of the image coordinates (usually arcsec).

– yc=

–or–

– rc= The radial distance from halo center (usually arcsec)

– angle= Position angle around lens from x-axis

– angle unit= The units of angle as a string (’degrees’ or ’radians’)

2.3 I/O support

function writeFITS(arg, filename, odir=None, clobber=True)

Call signature:

galflex.writeFITS(arg, filename, odir=None, clobber=True)

Function that will write images to a FITS file using pyfits. This can be called directly as a function:
galflex.writeFITS(image,...) or as a baseImage method. If called directly, accepts either a single in-
stance or a list of instances as the first argument.
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Automatically creates a directory ‘output’ in the run directory where the FITS file is saved. If odir is
specified, that directory will replace ‘output’.

Setting clobber=True when filename is given will silently overwrite existing files.

function inputParams(filename)

Call signature:

params = galflex.inputParams(filename)

Inputs the seven lensing parameters from a specified file: κ, γ1, γ2,F1,F2,G1,G2 with flexion in units of
inverse length.
The (float) parameters should be listed one per line in a simple text file. Function returns a list of the 7
parameters in the same order.

function outputParams(params, filename)

Call signature:

params = galflex.outputParams(params,filename)

Ouputs the seven lensing parameters to a specified file: κ, γ1, γ2,F1,F2,G1,G2 with flexion in units of inverse
length.
The (float) parameters will be listed one per line in a simple text file, and will by default create a directory
“output” where the simple text file is saved.

function plot(img, xmax, title=‘Lensed image’, units=‘Arcseconds’)

Call signature:

fig = galflex.plot(Img, xmax, title=’Lensed Image’, units=’Arcsec’)

Convenience method for simple viewing of images. Using matplotlib.pyplot, intended as a visual aid in
comparing images. Accepts simple arguments for changing the graph title and coordinate units if necessary.
Returns a matplotlib.pyplot figure() object. The user can also use the class method gal.plot(...).
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