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Beam Theory:

➔ macromolecules can  
   be viewed as               
   networks of one-        
   dimensional
 elements (chains of    

   amino acids, chains   
   of base pairs, …)

➔ beam theory               
   addresses the              
   mechanics of these     
   networks

➔ a bead treated as a     
   rod with elastic          
   properties
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Three types of deformations
Bending of a beam:

a neutral plane

Microscopic interpretation of bending
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Imagine a beam split up in segments each with own curvature
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Note that the extent of extension or compression is a linear function
of the distance from the neutral plane z:

=
L0

R
L z=Rz=

RzL0

R

L z=L z−L0=Rz
L0

R
−L0=z

L0

R

Extensional strain (z) at a distance z is defined as:

such that material above the neutral axis is stretched, (z) > 0, and 

material below the neutral axis is compressed, (z) < 0.

The energy cost is a quadratic function of the strain (Hooke's law):

z=L z
L0

=
z
R

W =1
2
E2=

1
2
ELL0


2

E ... the Young modulus
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A more precise calculation of the total strain energy of the beam:

Ebend=L0∫∂ dA
E

2R2 z
2=

EIL
2R2

I=∫
∂
z2dA I ...geometric moment
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Ebend=
EIL
2R2 For L=2R,we get : Eloop=

EI
R

We can introduce flexural rigidity:

Then the energy of bending is:

In general, we can express the 
bending energy in terms of
a curvature:

And we finally get:

Keff=EI

Ebend=
Keff

2
∫0

L
ds

1

Rs2

=
1

R s

Ebend=
Keff

2
∫0

L∣dtds∣
2

ds ∣dtds∣...derivativeof the tangent vector
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Persistence Length and Stiffness

➔ persistence length is a measure of the competition between the
 entropy (“randomizer”) and energy cost of bending 

➔ equate the deterministic energy cost to thermal energy:

➔ persistence length is the length of a polymer for which the radius
 of curvature is equal to the length of polymer itself:

➔ estimate of the persistence length:

kBT≈
EIL
2R2

P≈R≈L

P≈
EI

2kBT
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Persistence length characterizes the correlations in the tangent
vectors at different positions along the polymer

gs=〈t s⋅t0〉
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gs=0=1 gs∞=0

g s=〈 t s⋅t 0〉=e
−s /P

General properties of the tangent-tangent correlation function:

Relationship between flexural rigidity and persistence length:

➔ short beam of length: 

➔ short beam is only slightly bent:

➔ if a tangent at s=0 points in the z-direction, then:

L≈s≪P

Ebend=
EIL
2R2≈

EI
2s


2
s=R

gs=〈coss〉 ≪1 ⇒ cos≈1−
1
2


2

gs≈1−1
2
〈

2
〉
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Calculate:

We apply the same trick as before:

Thus, the only integral we really need to calculate is:

 

〈s2〉=1
Z∫0

2 d∫0
 dsin2 e

−EI /2kBT s
2

Z=∫0
2 d∫0

 dsine
−EI /2kBT s

2

〈s2 〉=− 1
Z

2kBT s
I

∂Z
∂E

Z=∫0

2
d∫0



d sine
−EI /2kBT s

2

≈∫0

2
d∫0



de
−EI /2kBT s

2

whereweused theTaylor expansion forsin ≈

Z=
2kBTs

EI ∫0

∞

due−u=
2kBTs

EI
1
Z
∂Z
∂E
=−

1
E

〈s2 〉=
2kBT s
EI

〈gs〉≈1−
kBT
EI

s=1−
s
P

P=
EI
kBT

=
Keff

kBT
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The Worm-Like Chain Model

➔ contains both the entropic and elastic bending contributions 
 to the free energy

➔ concept: chains are cylinders connected by flexible links

Z=∫D t s exp−P2∫0
L ∣d t
ds∣

2

ds

(A)
- no bending (optimal E)
- non-optimal S

(B)
- bending (non-optimal E)
- more optimal S

Sum over all possible t(s)
curves of length L:

Feynman Path Integral
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To calculate the force-extension curve, we need to include the work
done by the external force F (along the z-direction), which adds:

such that an average change extension can be calculated as:

Z(f) … partition function in the presence of the force
F = kBT f (f has a unit of inverse length)

Again, the same trick can be used to avoid a calculation of two path
integrals:

−F∫0
L tzds

〈z〉= 1
Z f∫

D t szexp−P2
∫0
L ∣d t s

ds ∣
2

dsf∫0
L tzds

〈z〉=d lnZ f
df

approx. solution: fP=
z
L


1
4 1−z /L2

−
1
4

AppendixofCh.10
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Force-Extension Curve for a Worm-Like Chain Model
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The mechanics of transcriptional regulation

➔ lac operon: genetic network that regulates the lactose 
 metabolism in E. coli

➔ consider lac repressor, a protein, which represses transcription 
 by binding  to DNA and initiating DNA loop formation

➔ Lac repressor: a tetrameric protein with three specific binding
 sites: O1, O2, and O3; loops can be either 401 or 92 bp long  
 (401 x 0.34 nm = 136 nm; 92 x 0.34 nm = 31 nm < 50 nm)

➔ in eukaryotes, there are cis-regulatory regions that control
 developmental process by DNA loop formation

➔ bending of a DNA fragment that is smaller than the persistence
 length     ! P
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cis-regulatory 
region of DNA
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Energetics of DNA looping

Bending energy of a loop with a radius R was calculated already:

For a DNA loop of length L, we take into account the following:

to obtain a more convenient bending energy of a DNA loop:

expressed in terms of the number of base pairs. We used the 
estimate for the persistence length:

Eloop=
PkBT

R

L=2R  R= L
2
=
Nbp

2
where=0.34nm

Eloop

kBT
=

22

Nbp
P ≈3000

Nbp

P=50nm
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The bending energy of DNA loops as a function of the number
of base pairs in the DNA
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Free Energy Estimate for DNA Looping: Elastic Energy
Combined with Entropic Contribution

➔ long DNA fragments: entropic contribution unfavorable

➔ short DNA fragment: bending contribution unfavorable

➔ elastic and entropic contributions:

➔ result in the total free energy change upon DNA looping:

Eloop≈
3000kBT

Nbp

p0∝
1

Nbp
3
 Sloop=kB lnp0=−kB

3
2

lnNbpconst

Gloop=Eloop−TSloop≈kBT 3000
Nbp


3
2

lnNbpconst
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The looping free energy as a function of the number of base pairs
as derived within a simple toy model

Nbp≈2000
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Experimental data and the worm-like chain (WLC) model
predict a slightly smaller favorable loop length

Nbp≈500
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What is the J-factor?

Cyclization experiments report a quantity J [in units of 
Concentration]:

So that the minimum of the free energy of looping is 
equivalent to the maximum of J.

J∝e
−Gloop
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DNA Packing: From Viruses to Eukaryotes

volume fraction=
genome

container
≈

Nbp×1nm3

container [nm
3
]

lambda phage
(virus)

E. coli

human sperm cell

human fibroblast
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The DNA Packing Compaction Ratio

a) lambda phage with spherical capsid of radius of 27 nm
     holding 48,500 base pairs:

b) bacterial nucleoid: a sphere of radius 0.25 m holding
     5 x 106 base pairs:

c) human sperm cell with a spherical nucleus of radius of 
    2.5 m holding 109 base pairs:

d) human fibroblast nucleus  of radius of 5 m holding 109 
    base pairs:

=
Nbpnm

3

4
3
R3nm3

≈
5×104

4×273≈0.6

≈
5×106

4×2503
≈0.1

≈
109

4×25003
≈0.02

≈
109

4×50003
≈0.002
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The Problem of Viral DNA Packing
(check “viper.com” for a databank of viral structures)

Why is the DNA packing in viruses
a problem&
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Cryo-electron microscopy images of packaged DNA

T7 capsids

A single capsid 
with rings of 
packaged DNA

DNA shells

Highly ordered structures!
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capsid volume:Vcapsid≈LDNA dS
2  dS∝

1

LDNA
1 /2
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Approximately correct scaling, though not on a large range

L−1/2 nm−1/2 



PHYS 461 & 561, Fall 2011-2012 2911/10-12/2011

Why does the DNA packing in viruses require energy?

➔ the entropic spring effect (DNA tends to spread out)

➔ elastic bending on the scale smaller than the persistence
 length of 50 nm 

➔ strongly negatively charged DNA (tends to avoid itself)

➔ the entropic contribution is about 10-times smaller than
 the bending and electrostatic free energy associated with
 DNA packing (in viruses):

➔ the force that resists the packing is then:

Gtotds ,L≈Gbendds ,LGcharge ds ,L

F=
−dGtot ds ,L

dL
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How can we measure the force needed to pack the DNA?

Optical tweezers:
pulling DNA against the
ATP-consuming motor
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Elastic Bending Contribution to the Free Energy: Circular Hoops

Eloop=
EI
R
=
PkBT

R
 Gbend=PkBT∑i

NRi

Ri

∑i


2

3ds
∫ dR ' 3

2
ds ...distancebetweenDNAstrands

Gbend=
2PkBT

3ds
∫R

Rout NR'
R'

dR '

DNA length:L=
2

3ds
∫R

Rout
2R'NR'dR '

cylindricalcapsidofheight z ,radiusRout :

GbendR=
2PkBT z

3ds
2

ln Rout

R  L R=
2z

3ds
2
Rout

2
−R2
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The second equation for L(R) can be used to express R:

And the final expression for the free energy of bending:

And the force associated with accumulated bending energy:

R=Rout1−
3ds

2L
2zRout

2

Gbend=
−PkBT z

3ds
2

ln 1− 3ds
2L

2zRout
2 

f L=
−dGbend

dL
=

−
PkBT
2Rout

2

1−
3dS

2 L
2zRout

2
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Electrostatic Contribution to the Free Energy of DNA Packing
In Viruses

➔ experiment that measures 
 osmotic pressure versus 
 DNA spacing ds 

➔ assume that parallel strands
 interact via a pair potential
 per unit length (only nearest
 neighbors): 

➔ if we experimentally determine
 the pressure, we can compute
 the interaction energy and obtain
 the pair potential 

ds

ds
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Consider N parallel strands of length l, each packed into a
hexagonal array with a spacing       :

(a factor of 3 = 1/2 x 6 for 6 nearest neighbors in the array)

The volume of the assembly is:

The pressure can be calculated as:

So that the force is:

Experimental observation was (Textbook, page 245):

ds Gcharge=3Nlds

V=3
2
Nds

2 l

p ds=
−dGcharge

dV
, dV=NI3dsdds

f ds=
dds

dds

=
1

3
p dsds

p ds=F0 e
−d

s
/c
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Which leads us to the final expressions:

This electrostatic contribution can be experimentally controlled
Through ionic concentration, which affects the energy through
        whereas                      is more or less constant over a wide 
range of salt conditions.
The total energy associated with DNA packing in viruses is:

ds=
1

3
F0 c

2
c dse

−d
s
/c

Gcharge=3F0c
2c dsL e

−d
s
/c
, L=Nl ... totalDNAlength

F0 c≈0.27nm

Gtot=GbendGcharge

Gtot=
−PkBTz

3ds
2

ln 1− 3ds
2L

2zRout
2 3F0c

2cdsL e
−d

s
/c
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We need to find the optimal spacing by minimizing the total free
energy (at fixed DNA length) with respect to the spacing:

Then use this relationship in the expression for the force F(L):

∂Gtot

∂ds

=0  ds=dsL

F L=
−∂Gtot

∂L

Forces for bacteriophage
viruses T4, T7, HK97, 
lambda, and 29
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