
Uniformly Accelerated Motion

In the case of uniformly accelerated motion (in one dimension), with acceleration a, we know that
a particle’s position x and velocity v are given by

x = x0 + v0 t+ 1
2 a t

2

v = v0 + a t

These equations represent a mathematical connection between the initial (subscript 0) state of the
system and the system at any subsequent time t.

The basic idea behind any numerical algorithm for determining the particle trajectory is break
the motion into many small segments, or time steps. In the numerical world, the continuous
trajectory {x(t), 0 ≤ t < T} is represented by a discrete set of points {x(ti), i = 0, ..., N}, with
t0 = 0, tN = T . Strictly speaking, we know nothing about the behavior of the system at intermediate
times. We normally interpolate between data points as needed, but realize that this in fact entails
making certain (reasonable) assumptions about the mathematical form of the true solution.

Given the state of the system at time t0 (i.e. the initial conditions of the calculation), the goal
of our algorithm is to determine the state of the system at any subsequent time ti. In most cases,
this boils down to the following:

given xi = x(ti) at time ti, and a time step δti, determine a numerical
estimate of the state of the system at time ti+1 = ti + δti.

In other words, we must write down a rule that maps (xi, vi) into (xi+1, vi+1). Such a rule is known
as an integration scheme. Clearly, applying the scheme repeatedly will accomplish the desired goal
of advancing the system arbitrarily far forward in time. The result of each step becomes the initial
state for the next.

For uniformly accelerated motion, this is easy to do, as the formula given above connects the
positions and velocities at the start and end of the step. We can write

xi+1 = xi + viδt+ 1
2aδt

2 ,

vi+1 = vi + aδt ,

ti+1 = ti + δt .

This is our first integration scheme! The mapping from state i to state i+1 is the discrete numerical
analog of the continuous integral operator that maps the initial conditions of the problem (at t = 0)
into the state of the system at time t.

Note that the map is explicit—the procedure for getting from state i to state i+1 depends only
on quantities determinable at time ti. This statement is the key operational difference between the
numerical scheme and the previous analytic expression.

Notice, by the way (as we’ll see in Homework 3) that the integration scheme just described
is exact for the special case of uniformly accelerated motion—not too surprising, considering how
it was derived! In general, however, the scheme produces only an approximation to the correct
solution, as we will explore in future exercises.


