PHYS 105

In-class exercise 9.1(a) Suborbital Motion: Curvature

Let's continue to increase the realism of our simulations. Start with the two-dimensional predictorcorrector scheme with " β -law" air resistance developed last time, and consider again a projectile launched with speed $v_0 = 1500$ m/s at an angle of 20° to the horizontal. Again take gravity to be uniform, $a_x = 0$, $a_y = -g = -9.80$ m/s², and use a timestep of $\delta t = 0.1$ s. For now, turn off the effects of air resistance by setting $\beta = 0$.

First include the *curvature* of Earth's surface in determining the end of the trajectory. From here on, it will be convenient to take Earth's *center* as the origin—apart from the initial value of y, the integrator is unchanged. Our initial position thus is x = 0, y = R, where R = 6,400 km = 6.4×10^6 m is Earth's radius. We will terminate our calculation when $r = \sqrt{x^2 + y^2}$ becomes less than R, and interpolate all quantities to r = R to determine the range (now measured *along* the surface), maximum height (now measured in the *radial* direction) and time of flight.

• By how much does the range change when curvature is considered?