Exercise 5.1: Run the program created in in-class Exercise 4.2(a) for several different values of δt — starting at 0.5 and decreasing in size by factors of 2 until $\delta t < 10^{-4}$ — and investigate how the energy error ΔE , defined as

$$\Delta E(\delta t) \equiv \max_{i} |E(t_i) - E(0)|,$$

depends on δt , where $t_i = i\delta t$ and the maximum is computed over all time steps. Specifically, compute the motion up to time $t_{max} = 20$, plot $\log_{10} \Delta E$ against $\log_{10} \delta t$ and determine the slope of the straight line that best fits the data. [Note that the C++/Python function returning \log_{10} is called log10 — the log function returns the natural logarithm (ln or \log_e) of its argument.]