
1 Operations on a Numerical Grid

Several elementary mathematical operations are of primary importance in the Physics Sci-
ences and Engineering. These include root finding, locating maxima and minima, as well
as basic integration and differentiation. We learn about all of these in calculus class, in the
context of continuous functions. But what if the function is only known via a table based
on a numerical grid, or (as in most numerical simulations) is defined only at discrete points?
This section reviews some numerical methods used to perform these operations.

1.1 Functions on a Grid

The numerical algorithms described here are designed to perform basic mathematical oper-
ations on functions tabulated on uniformly spaced (simpler) or arbitrary numerical grids. A
uniformly spaced grid is defined by three of four parameters: (1) its starting point A, (2) its
ending point B, and either (3) the number of grid points N or (4) the grid spacing ∆x. The
last two are related by

∆x =
B − A

N − 1
.

In what follows, for purposes of illustration we will use a simple function

f(x) = x e−x2

= x exp(−x2).

The following C++ program (FunctionOnGrid.cpp) lists the values of f(x) on a numerical
grid in tabular form.

#include <iostream>

#include <cmath>

double F(double x)

{

return x * exp(-(x * x));

}

int main()

{

double x, func;

int i;

// Define the grid.

double A = -1.0;

double B = 3.0;

int N = 51;

double dx = (B - A)/(N-1);

// Function on this grid.

for(i=0; i<N; i++) {

x = A + i*dx;

func = F(x);

std::cout << i << " " << x << " " << func << "\n";

}

}

It lists i, xi and f(xi) for the index i in the range [0, N − 1] and xi = A + i∆x. The output
stream of the program may be piped into a file.

2 Integrals

Calculating a definite integral of a function entails finding the area under the curve defined by
the function. This graphical interpretation leads to some very simple and intuitive methods
when combined with the listing of the function on a numerical grid. Specifically, numerical
calculation of a definite integral amounts to summing the areas of a series of strips covering
the integration domain, as illustrated in the figure below.

We will use our example function

f(x) = x exp(−x2)

and calculate the definite integral

I =
∫ B

A
f(x)dx

for various domains. The C++ program listed earlier lists f(x) in a tabular fashion.

2.1 The Trapezoidal Rule

The simplest methods follow from the assumption that every strip under the curve is a rect-
angle based on the function value at the left or at the right of each strip. However, intuition
tells us that this will give a very inaccurate value for the area since we are approximating
the underlying function by horizontal straight line segments.

A more accurate form follows if we assume that each strip has the shape of a trapezoid.
The area of such a trapezoidal shaped strip, delimited by fi and fi+1, is

dai = 1
2

∆x (fi + fi+1).

The area under the curve is simply the sum of the areas of all such strips between A(i−0)
and B(i = N − 1):

I =
N−2∑
i=0

dai

=

[
1
2
(f0 + fN−1) +

N−2∑
i=1

fi

]
∆x.

The method is illustrated in the following code (Trapezoid.cpp)

// Read a function on a grid from a file; calculate the area under

// the curve.

#include <iostream>

#include <cmath>

int main()

{

double xx[1000], ff[1000];

int i, j;

// Read the function from cin.

j = 0;

for (; ;) {

std::cin >> i >> xx[j] >> ff[j] ;

if (std::cin.eof() == true)

break;

j++;

}

// numerical grid

double dx = xx[1] - xx[0];

int N = j;

// Area via Trapezoidal rule.

double area = 0.0;

for(i=0; i<N-2; i++) {

double areastrip = 0.5 * (ff[i]+ff[i+1]) * dx;

area = area + areastrip;

}

std::cout << "# Area (Trapezoidal) = " << area << "\n";

// Exact area (integral).

std::cout << "# Area (exact) = " <<

- (exp(-xx[N-1]*xx[N-1]) - exp(-xx[0]*xx[0])) / 2.0 << " \n" ;

}

The earlier program may be used to pipe data into this code.
The advantage of using the simple form f(x) = x exp(−x2) is that the exact integral is

easily determined analytically:

I =
∫

x exp(−x2) dx = −1
2

exp(−x2),

so

I =
∫ B

A
f(x) dx = −1

2

[
exp(−B2)− exp(−A2)

]
.

Exercise: Can you derive this result?

Exercise: What is the percentage error in the Trapezoidal rule area compared to the exact
answer?

2.2 Simpson’s Rule

The relatively low accuracy of the Trapezoidal Rule is related the straight-line interpolation
used to integrate the function. The more accurate Simpson’s rule stems from the use of a
parabola to fit two adjacent strips at a time. The parabola is constrained to fit the three
function values within the two strips.

The following program computes the previous integral via Simpson’s rule and compares
the result to the Trapezoidal rule (Simpson.cpp).

// Read a function on a grid from a file; calculate the area under

// the curve.

#include <iostream>

#include <cmath>

int main()

{

double xx[1000], ff[1000];

int i, j;

// Read the function from cin.

j = 0;

for (; ;) {

std::cin >> i >> xx[j] >> ff[j] ;

if (std::cin.eof() == true)

break;

j++;

}

// numerical grid

double dx = xx[1] - xx[0];

int N = j;

// Area via Trapezoidal rule.

double area = 0.0;

for(i=0; i<N-2; i++) {

double areastrip = 0.5 * (ff[i]+ff[i+1]) * dx;

area = area + areastrip;

}

std::cout << "# Area (Trapezoidal) = " << area << "\n";

// Area via Simpson’s rule.

if ((N % 2) != 1) {

std::cerr << "N must be odd \n";

return 1;

}

area = 0.0;

for(i=0; i<N-3; i=i+2) {

double areastrip = (ff[i] + 4.0*ff[i+1] + ff[i+2]) * dx / 3.0;

area = area + areastrip;

}

std::cout << "# Area (Simpson) = " << area << "\n";

// Exact area (integral).

std::cout << "# Area (exact) = " <<

- (exp(-xx[N-1]*xx[N-1]) - exp(-xx[0]*xx[0])) / 2.0 << " \n" ;

}

Exercise: Is it more accurate?

3 Numerical Derivatives

Calculating the derivative of a function is as fundamental as calculating its integral. Some
numerical approaches are illustrated below. Be careful, though—numerical differentiation of
noisy data will lead to very poor results!

The first figure illustrates three points of a function defined on an equally spaced grid.

A low-order approach follows by using the points i and i+ 1—the Forward formula. The
Backward formula follows the same procedure but is based on the points i− 1 and i. Both
formulae for the derivative at i yield the same slope in the limit ∆x→ 0, as discussed in any
calculus textbook. However the numerical approach always implies finite ∆x, and therefore
not so accurate results.

A more accurate way to compute the derivatives is illustrated in the figure below. The
so-called Symmetric form uses the function values at points i + 1 and i− 1.

The following program (Derivative.cpp) reads a tabulated function from the input
stream and calculates its numerical derivative using the three numerical forms, Forward,
Backward, and Symmetric.

// Read a function on a grid from file; calculate the derivative

#include <iostream>

#include <cmath>

int main()

{

double dx, xx[1000], ff[1000];

int i, j;

double Fwd, Bwd, Symm, Exact;

// Read the function from cin.

j = 0;

for (; ;)

{

std::cin >> i >> xx[j] >> ff[j] ;

if (std::cin.eof() == true)

break;

j++;

}

int N = j;

// Derivatives (skip first and last points).

dx = xx[1] - xx[0];

for(j=1; j < N-1 ; j++)

{

Fwd = (ff[j+1] - ff[j]) / dx;

Bkwd = (ff[j] - ff[j-1]) / dx;

Symm = (ff[j+1] - ff[j-1]) / (2.0*dx);

Exact = (1.0 - 2.0 * xx[j] * xx[j]) * exp(- xx[j]*xx[j]);

std::cout << j << " " << xx[j] << " " << Fwd << " "

<< Bkwd << " "

<< Symm << " " << Exact << "\n";

}

}

The exact derivative of f(x) is also calculated as a reference. It is obvious both graphically
and by comparison with the exact answer that the the symmetrical form is the most accurate.

Note that (some of) these formulae do not allow us to calculate the derivatives at the
first or last points on the grid. Can you see why?

Note also that the calculation of derivatives is intrinsically not very accurate, and suffers
from round-off error as ∆x→ 0.

